Suppr超能文献

设计光催化电化学:调整铂/氧化镍复合材料的纳米级结构可提高光催化电化学析氢性能。

Photoelectrochemistry by Design: Tailoring the Nanoscale Structure of Pt/NiO Composites Leads to Enhanced Photoelectrochemical Hydrogen Evolution Performance.

作者信息

Sápi András, Varga András, Samu Gergely F, Dobó Dorina, Juhász Koppány L, Takács Bettina, Varga Erika, Kukovecz Ákos, Kónya Zoltán, Janáky Csaba

机构信息

Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Square 1, Szeged, H-6720, Hungary.

MTA-SZTE "Lendület" Photoelectrochemistry Research Group, University of Szeged, Rerrich Square 1, Szeged, H-6720, Hungary.

出版信息

J Phys Chem C Nanomater Interfaces. 2017 Jun 8;121(22):12148-12158. doi: 10.1021/acs.jpcc.7b00429. Epub 2017 Apr 5.

Abstract

Photoelectrochemical hydrogen evolution is a promising avenue to store the energy of sunlight in the form of chemical bonds. The recent rapid development of new synthetic approaches enables the nanoscale engineering of semiconductor photoelectrodes, thus tailoring their physicochemical properties toward efficient H formation. In this work, we carried out the parallel optimization of the morphological features of the semiconductor light absorber (NiO) and the cocatalyst (Pt). While nanoporous NiO films were obtained by electrochemical anodization, the monodisperse Pt nanoparticles were synthesized using wet chemical methods. The Pt/NiO nanocomposites were characterized by XRD, XPS, SEM, ED, TEM, cyclic voltammetry, photovoltammetry, EIS, etc. The relative enhancement of the photocurrent was demonstrated as a function of the nanoparticle size and loading. For mass-specific surface activity the smallest nanoparticles (2.0 and 4.8 nm) showed the best performance. After deconvoluting the trivial geometrical effects (stemming from the variation of Pt particle size and thus the electroactive surface area), however, the intermediate particle sizes (4.8 and 7.2 nm) were found to be optimal. Under optimized conditions, a 20-fold increase in the photocurrent (and thus the H evolution rates) was observed for the nanostructured Pt/NiO composite, compared to the benchmark nanoparticulate NiO film.

摘要

光电化学析氢是一种很有前景的将太阳能以化学键形式储存的途径。近期新合成方法的快速发展使得半导体光电极的纳米级工程成为可能,从而针对高效析氢来调整其物理化学性质。在这项工作中,我们对半导体光吸收体(NiO)和助催化剂(Pt)的形态特征进行了并行优化。通过电化学阳极氧化获得了纳米多孔NiO薄膜,而使用湿化学方法合成了单分散的Pt纳米颗粒。通过XRD、XPS、SEM、ED、TEM、循环伏安法、光电压法、EIS等对Pt/NiO纳米复合材料进行了表征。光电流的相对增强表现为纳米颗粒尺寸和负载量的函数。对于质量比表面活性,最小的纳米颗粒(2.0和4.8纳米)表现出最佳性能。然而,在消除了微不足道的几何效应(源于Pt颗粒尺寸的变化以及由此产生的电活性表面积)之后,发现中等颗粒尺寸(4.8和7.2纳米)是最佳的。在优化条件下,与基准纳米颗粒NiO薄膜相比,纳米结构的Pt/NiO复合材料的光电流(以及析氢速率)增加了20倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f02e/5467181/b1a35cbe8df2/jp-2017-00429w_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验