Suppr超能文献

IpiRId:利用基因组和表观基因组数据进行piRNA预测的综合方法。

IpiRId: Integrative approach for piRNA prediction using genomic and epigenomic data.

作者信息

Boucheham Anouar, Sommard Vivien, Zehraoui Farida, Boualem Adnane, Batouche Mohamed, Bendahmane Abdelhafid, Israeli David, Tahi Fariza

机构信息

IBISC, Univ Evry, Université Paris-Saclay, Evry, France.

Faculty of ISCA, Constantine University 3, Constantine, Algeria.

出版信息

PLoS One. 2017 Jun 16;12(6):e0179787. doi: 10.1371/journal.pone.0179787. eCollection 2017.

Abstract

Many computational tools have been proposed during the two last decades for predicting piRNAs, which are molecules with important role in post-transcriptional gene regulation. However, these tools are mostly based on only one feature that is generally related to the sequence. Discoveries in the domain of piRNAs are still in their beginning stages, and recent publications have shown many new properties. Here, we propose an integrative approach for piRNA prediction in which several types of genomic and epigenomic properties that can be used to characterize these molecules are examined. We reviewed and extracted a large number of piRNA features from the literature that have been observed experimentally in several species. These features are represented by different kernels, in a Multiple Kernel Learning based approach, implemented within an object-oriented framework. The obtained tool, called IpiRId, shows prediction results that attain more than 90% of accuracy on different tested species (human, mouse and fly), outperforming all existing tools. Besides, our method makes it possible to study the validity of each given feature in a given species. Finally, the developed tool is modular and easily extensible, and can be adapted for predicting other types of ncRNAs. The IpiRId software and the user-friendly web-based server of our tool are now freely available to academic users at: https://evryrna.ibisc.univ-evry.fr/evryrna/.

摘要

在过去二十年中,已经提出了许多计算工具来预测piRNA,piRNA是在转录后基因调控中起重要作用的分子。然而,这些工具大多仅基于通常与序列相关的一个特征。piRNA领域的发现仍处于起步阶段,最近的出版物展示了许多新特性。在此,我们提出了一种用于piRNA预测的综合方法,其中研究了几种可用于表征这些分子的基因组和表观基因组特性类型。我们从文献中回顾并提取了大量在多个物种中通过实验观察到的piRNA特征。在基于面向对象框架实现的基于多核学习的方法中,这些特征由不同的核表示。所获得的工具IpiRId在不同测试物种(人类、小鼠和果蝇)上显示出准确率超过90%的预测结果,优于所有现有工具。此外,我们的方法能够研究给定物种中每个给定特征的有效性。最后,开发的工具具有模块化且易于扩展的特点,并且可以适用于预测其他类型的非编码RNA。我们工具的IpiRId软件和基于网络的用户友好型服务器现在可供学术用户免费使用,网址为:https://evryrna.ibisc.univ-evry.fr/evryrna/

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/325b/5473586/c87e33982db7/pone.0179787.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验