Université Paris-Saclay, Univ Evry, IBISC, 91020, Evry-Courcouronnes, France.
Brief Bioinform. 2023 Jul 20;24(4). doi: 10.1093/bib/bbad225.
RNAs can interact with other molecules in their environment, such as ions, proteins or other RNAs, to form complexes with important biological roles. The prediction of the structure of these complexes is therefore an important issue and a difficult task. We are interested in RNA complexes composed of several (more than two) interacting RNAs. We show how available knowledge on the considered RNAs can help predict their secondary structure. We propose an interactive tool for the prediction of RNA complexes, called C-RCPRed, that considers user knowledge and probing data (which can be generated experimentally or artificially). C-RCPred is based on a multi-objective optimization algorithm. Through an extensive benchmarking procedure, which includes state-of-the-art methods, we show the efficiency of the multi-objective approach and the positive impact of considering user knowledge and probing data on the prediction results. C-RCPred is freely available as an open-source program and web server on the EvryRNA website (https://evryrna.ibisc.univ-evry.fr).
RNAs 可以与其环境中的其他分子(如离子、蛋白质或其他 RNAs)相互作用,形成具有重要生物学功能的复合物。因此,预测这些复合物的结构是一个重要的问题,也是一项艰巨的任务。我们感兴趣的是由几个(两个以上)相互作用的 RNAs 组成的 RNA 复合物。我们展示了如何利用现有知识来预测它们的二级结构。我们提出了一种称为 C-RCPRed 的用于预测 RNA 复合物的交互式工具,该工具考虑了用户知识和探测数据(可通过实验或人工生成)。C-RCPRed 基于多目标优化算法。通过广泛的基准测试程序,包括最先进的方法,我们展示了多目标方法的效率,以及考虑用户知识和探测数据对预测结果的积极影响。C-RCPRed 可作为开源程序在 EvryRNA 网站(https://evryrna.ibisc.univ-evry.fr)上免费获取。