Kaufmann Kerstin, Chen Dijun
Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
Methods Mol Biol. 2017;1629:1-11. doi: 10.1007/978-1-4939-7125-1_1.
Plants, like other eukaryotes, have evolved complex mechanisms to coordinate gene expression during development, environmental response, and cellular homeostasis. Transcription factors (TFs), accompanied by basic cofactors and posttranscriptional regulators, are key players in gene-regulatory networks (GRNs). The coordinated control of gene activity is achieved by the interplay of these factors and by physical interactions between TFs and DNA. Here, we will briefly outline recent technological progress made to elucidate GRNs in plants. We will focus on techniques that allow us to characterize physical interactions in GRNs in plants and to analyze their regulatory consequences. Targeted manipulation allows us to test the relevance of specific gene-regulatory interactions. The combination of genome-wide experimental approaches with mathematical modeling allows us to get deeper insights into key-regulatory interactions and combinatorial control of important processes in plants.
与其他真核生物一样,植物已经进化出复杂的机制来在发育、环境响应和细胞稳态过程中协调基因表达。转录因子(TFs)在基本辅助因子和转录后调节因子的伴随下,是基因调控网络(GRNs)中的关键参与者。基因活性的协调控制是通过这些因子之间的相互作用以及转录因子与DNA之间的物理相互作用来实现的。在这里,我们将简要概述在阐明植物基因调控网络方面取得的最新技术进展。我们将重点关注那些能够让我们表征植物基因调控网络中的物理相互作用并分析其调控后果的技术。靶向操作使我们能够测试特定基因调控相互作用的相关性。全基因组实验方法与数学建模的结合使我们能够更深入地了解植物中关键调控相互作用以及重要过程的组合控制。