Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile.
Annu Rev Plant Biol. 2021 Jun 17;72:105-131. doi: 10.1146/annurev-arplant-081320-090914. Epub 2021 Mar 5.
All aspects of transcription and its regulation involve dynamic events. However, capturing these dynamic events in gene regulatory networks (GRNs) offers both a promise and a challenge. The promise is that capturing and modeling the dynamic changes in GRNs will allow us to understand how organisms adapt to a changing environment. The ability to mount a rapid transcriptional response to environmental changes is especially important in nonmotile organisms such as plants. The challenge is to capture these dynamic, genome-wide events and model them in GRNs. In this review, we cover recent progress in capturing dynamic interactions of transcription factors with their targets-at both the local and genome-wide levels-and how they are used to learn how GRNs operate as a function of time. We also discuss recent advances that employ time-based machine learning approaches to forecast gene expression at future time points, a key goal of systems biology.
转录及其调控的各个方面都涉及动态事件。然而,在基因调控网络 (GRN) 中捕捉这些动态事件既带来了希望,也带来了挑战。希望在于捕捉和模拟 GRN 中的动态变化将使我们能够了解生物体如何适应不断变化的环境。能够对环境变化做出快速转录反应的能力在非运动生物(如植物)中尤为重要。挑战在于捕捉这些动态的、全基因组范围的事件,并在 GRN 中对其进行建模。在这篇综述中,我们介绍了在捕获转录因子与其靶标之间的局部和全基因组范围的动态相互作用方面的最新进展,以及如何利用这些信息来了解 GRN 如何随时间运行。我们还讨论了最近利用基于时间的机器学习方法来预测未来时间点基因表达的进展,这是系统生物学的一个关键目标。