Mejia-Guerra Maria Katherine, Pomeranz Marcelo, Morohashi Kengo, Grotewold Erich
The Ohio State University, Columbus, OH 43210, USA.
Biochim Biophys Acta. 2012 May;1819(5):454-65. doi: 10.1016/j.bbagrm.2012.02.016. Epub 2012 Mar 2.
The regulation of gene expression is the most basic level at which genotypes encoded in DNA can manifest themselves into observable phenotypes. In eukaryotes, gene regulatory networks (GRNs) describe the regulatory web through which transcription factors and microRNAs tightly regulate the spatial and temporal expression of genes. In yeast, Escherichia coli, and animals the study of GRNs has uncovered many of the network properties responsible for creating complex regulatory behavior such as organism growth, development, and response to environmental stimuli. In plants, the study of GRNs is just starting to gain momentum thanks to new high quality genomes and the development of new tools for GRN mapping. Here, we review the latest advancements in the study of plant GRNs and describe the tools and techniques used to produce them. We also discuss the emerging field of network dynamics and the methods currently being developed to measure network dynamics and function in plants.
基因表达调控是DNA中编码的基因型能够表现为可观察到的表型的最基本层面。在真核生物中,基因调控网络(GRNs)描述了转录因子和微小RNA紧密调控基因时空表达的调控网络。在酵母、大肠杆菌和动物中,对GRNs的研究揭示了许多负责产生复杂调控行为(如生物体生长、发育和对环境刺激的反应)的网络特性。在植物中,由于新的高质量基因组以及GRN图谱绘制新工具的开发,对GRNs的研究才刚刚开始兴起。在这里,我们回顾了植物GRNs研究的最新进展,并描述了用于构建它们的工具和技术。我们还讨论了网络动力学这一新兴领域以及目前正在开发的用于测量植物网络动力学和功能的方法。