Knafo Steven, Fidelin Kevin, Prendergast Andrew, Tseng Po-En Brian, Parrin Alexandre, Dickey Charles, Böhm Urs Lucas, Figueiredo Sophie Nunes, Thouvenin Olivier, Pascal-Moussellard Hugues, Wyart Claire
Institut du Cerveau et de la Moelle épinière (I.C.M.), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Paris, France.
AP-HP, Hôpital Pitié-Salpêtrière, Paris, France.
Elife. 2017 Jun 19;6:e25260. doi: 10.7554/eLife.25260.
Despite numerous physiological studies about reflexes in the spinal cord, the contribution of mechanosensory feedback to active locomotion and the nature of underlying spinal circuits remains elusive. Here we investigate how mechanosensory feedback shapes active locomotion in a genetic model organism exhibiting simple locomotion-the zebrafish larva. We show that mechanosensory feedback enhances the recruitment of motor pools during active locomotion. Furthermore, we demonstrate that inputs from mechanosensory neurons increase locomotor speed by prolonging fast swimming at the expense of slow swimming during stereotyped acoustic escape responses. This effect could be mediated by distinct mechanosensory neurons. In the spinal cord, we show that connections compatible with monosynaptic inputs from mechanosensory Rohon-Beard neurons onto ipsilateral V2a interneurons selectively recruited at high speed can contribute to the observed enhancement of speed. Altogether, our study reveals the basic principles and a circuit diagram enabling speed modulation by mechanosensory feedback in the vertebrate spinal cord.
尽管对脊髓反射进行了大量生理学研究,但机械感觉反馈对主动运动的贡献以及潜在脊髓回路的性质仍不清楚。在这里,我们研究了机械感觉反馈如何塑造一种表现出简单运动的基因模式生物——斑马鱼幼虫的主动运动。我们表明,机械感觉反馈在主动运动过程中增强了运动神经元池的募集。此外,我们证明,在刻板的听觉逃避反应中,机械感觉神经元的输入通过延长快速游泳而牺牲慢速游泳来提高运动速度。这种效应可能由不同的机械感觉神经元介导。在脊髓中,我们表明,与机械感觉罗霍恩-比尔神经元到同侧V2a中间神经元的单突触输入兼容的连接,在高速时被选择性募集,这可能有助于观察到的速度增强。总之,我们的研究揭示了脊椎动物脊髓中通过机械感觉反馈实现速度调制的基本原理和电路图。