Suppr超能文献

“做正确的事”:影响全科医生开具抗抑郁药及处方剂量的因素

'Doing the right thing': factors influencing GP prescribing of antidepressants and prescribed doses.

作者信息

Johnson Chris F, Williams Brian, MacGillivray Stephen A, Dougall Nadine J, Maxwell Margaret

机构信息

Pharmacy and Prescribing Support Unit, NHS Greater Glasgow and Clyde, 2nd Floor, Main Building, West Glasgow Ambulatory Care Hospital, Dalnair Street, Yorkhill, Glasgow, G3 8SJ, UK.

School of Health and Social Care, Edinburgh Napier University, Sighthill Court, Edinburgh, EH11 4BN, UK.

出版信息

BMC Fam Pract. 2017 Jun 17;18(1):72. doi: 10.1186/s12875-017-0643-z.

Abstract

BACKGROUND

Antidepressant prescribing continues to increase, with 5-16% of adults receiving antidepressants annually. Total prescribing growth is due in part to increased long-term use, greater selective serotonin re-uptake inhibitor (SSRI) use and the use of higher SSRI doses. Evidence does not support routine use of higher SSRI doses for depression treatment, and factors influencing the use of such doses are not well known. The aim of this study was to explore factors influencing GPs' use of antidepressants and their doses to treat depression.

METHODS

Semi-structured interviews with a purposive sample of 28 practising GPs; sampled by antidepressant prescribing volume, practice size and deprivation level. A topic guide drawing on past literature was used with enough flexibility to allow additional themes to emerge. Interviews were audio-recorded and transcribed verbatim. Framework analysis was employed. Constant comparison and disconfirmation were carried out across transcripts, with data collection being interspersed with analysis by three researchers. The thematic framework was then systematically applied to the data and conceptualised into an overarching explanatory model.

RESULTS

Depression treatment involved ethical and professional imperatives of 'doing the right thing' for individuals by striving to achieve the 'right care fit'. This involved medicalised and non-medicalised patient-centred approaches. Factors influencing antidepressant prescribing and doses varied over time from first presentation, to antidepressant initiation and longer-term treatment. When faced with distressed patients showing symptoms of moderate to severe depression GPs were confident prescribing SSRIs which they considered as safe and effective medicines, and ethically and professionally appropriate. Many GPs were unaware that higher doses lacked greater efficacy and onset of action occurred within 1-2 weeks, preferring to wait 8-12 weeks before increasing or switching. Ongoing pressures to maintain prescribing (e.g. fear of depression recurrence), few perceived continuation problems (e.g. lack of safety concerns) and lack of proactive medication review (e.g. patients only present in crisis), all combine to further drive antidepressant prescribing growth over time.

CONCLUSIONS

GPs strive to 'do the right thing' to help people. Antidepressants are only a single facet of depression treatment. However, increased awareness of drug limitations and regular proactive reviews may help optimise care.

摘要

背景

抗抑郁药物的处方量持续增加,每年有5%至16%的成年人服用抗抑郁药。处方总量的增长部分归因于长期用药增加、选择性5-羟色胺再摄取抑制剂(SSRI)的使用增多以及更高剂量SSRI的使用。证据并不支持常规使用更高剂量的SSRI来治疗抑郁症,且影响此类剂量使用的因素尚不明确。本研究的目的是探讨影响全科医生使用抗抑郁药及其剂量治疗抑郁症的因素。

方法

对28名执业全科医生进行有目的抽样的半结构式访谈;根据抗抑郁药物处方量、诊所规模和贫困程度进行抽样。使用基于以往文献的主题指南,具有足够的灵活性以允许出现其他主题。访谈进行录音并逐字转录。采用框架分析。对各份转录本进行持续比较和验证,由三位研究人员在数据收集过程中穿插进行分析。然后将主题框架系统地应用于数据,并将其概念化为一个总体解释模型。

结果

抑郁症治疗涉及为个体“做正确的事”的伦理和专业要求,即努力实现“合适的治疗匹配”。这涉及以医学和非医学方式以患者为中心的方法。影响抗抑郁药处方及剂量的因素在从首次就诊到开始使用抗抑郁药以及长期治疗的过程中会随时间变化。当面对表现出中度至重度抑郁症症状的痛苦患者时,全科医生对开具SSRI有信心,他们认为这些药物安全有效,且在伦理和专业上是合适的。许多全科医生并未意识到更高剂量并不具有更大疗效,且起效时间在1至2周内,他们更倾向于在8至12周后才增加剂量或换药。持续的维持处方压力(如担心抑郁症复发)、几乎没有察觉到的持续问题(如缺乏安全性担忧)以及缺乏主动的药物审查(如患者仅在危机时就诊),所有这些因素随着时间的推移共同促使抗抑郁药处方量进一步增长。

结论

全科医生努力“做正确的事”来帮助患者。抗抑郁药只是抑郁症治疗的一个方面。然而,提高对药物局限性的认识和定期进行主动审查可能有助于优化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b08/5473964/b4cfa0b4c153/12875_2017_643_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验