Suppr超能文献

结直肠癌中基于肿瘤解剖位置的生物标志物关联网络

Biomarker correlation network in colorectal carcinoma by tumor anatomic location.

作者信息

Nishihara Reiko, Glass Kimberly, Mima Kosuke, Hamada Tsuyoshi, Nowak Jonathan A, Qian Zhi Rong, Kraft Peter, Giovannucci Edward L, Fuchs Charles S, Chan Andrew T, Quackenbush John, Ogino Shuji, Onnela Jukka-Pekka

机构信息

Program of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.

Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

出版信息

BMC Bioinformatics. 2017 Jun 17;18(1):304. doi: 10.1186/s12859-017-1718-5.

Abstract

BACKGROUND

Colorectal carcinoma evolves through a multitude of molecular events including somatic mutations, epigenetic alterations, and aberrant protein expression, influenced by host immune reactions. One way to interrogate the complex carcinogenic process and interactions between aberrant events is to model a biomarker correlation network. Such a network analysis integrates multidimensional tumor biomarker data to identify key molecular events and pathways that are central to an underlying biological process. Due to embryological, physiological, and microbial differences, proximal and distal colorectal cancers have distinct sets of molecular pathological signatures. Given these differences, we hypothesized that a biomarker correlation network might vary by tumor location.

RESULTS

We performed network analyses of 54 biomarkers, including major mutational events, microsatellite instability (MSI), epigenetic features, protein expression status, and immune reactions using data from 1380 colorectal cancer cases: 690 cases with proximal colon cancer and 690 cases with distal colorectal cancer matched by age and sex. Edges were defined by statistically significant correlations between biomarkers using Spearman correlation analyses. We found that the proximal colon cancer network formed a denser network (total number of edges, n = 173) than the distal colorectal cancer network (n = 95) (P < 0.0001 in permutation tests). The value of the average clustering coefficient was 0.50 in the proximal colon cancer network and 0.30 in the distal colorectal cancer network, indicating the greater clustering tendency of the proximal colon cancer network. In particular, MSI was a key hub, highly connected with other biomarkers in proximal colon cancer, but not in distal colorectal cancer. Among patients with non-MSI-high cancer, BRAF mutation status emerged as a distinct marker with higher connectivity in the network of proximal colon cancer, but not in distal colorectal cancer.

CONCLUSION

In proximal colon cancer, tumor biomarkers tended to be correlated with each other, and MSI and BRAF mutation functioned as key molecular characteristics during the carcinogenesis. Our findings highlight the importance of considering multiple correlated pathways for therapeutic targets especially in proximal colon cancer.

摘要

背景

结直肠癌通过多种分子事件演变,包括体细胞突变、表观遗传改变和异常蛋白表达,这些过程受宿主免疫反应影响。探究复杂致癌过程及异常事件间相互作用的一种方法是构建生物标志物关联网络。这种网络分析整合多维肿瘤生物标志物数据,以识别对潜在生物学过程至关重要的关键分子事件和通路。由于胚胎学、生理学和微生物学差异,近端和远端结直肠癌具有不同的分子病理特征集。鉴于这些差异,我们推测生物标志物关联网络可能因肿瘤位置而异。

结果

我们使用来自1380例结直肠癌病例的数据,对54种生物标志物进行了网络分析,这些生物标志物包括主要突变事件、微卫星不稳定性(MSI)、表观遗传特征、蛋白表达状态和免疫反应:690例近端结肠癌病例和690例远端结直肠癌病例,年龄和性别匹配。通过Spearman相关性分析,根据生物标志物之间具有统计学意义的相关性来定义边。我们发现,近端结肠癌网络形成的网络比远端结直肠癌网络更密集(边的总数,近端结肠癌网络n = 173,远端结直肠癌网络n = 95)(置换检验P < 0.0001)。近端结肠癌网络的平均聚类系数值为0.50,远端结直肠癌网络为0.30,表明近端结肠癌网络具有更强的聚类趋势。特别是,MSI是一个关键枢纽,在近端结肠癌中与其他生物标志物高度连接,但在远端结直肠癌中并非如此。在非MSI高的癌症患者中,BRAF突变状态在近端结肠癌网络中成为具有更高连接性的独特标志物,但在远端结直肠癌中并非如此。

结论

在近端结肠癌中,肿瘤生物标志物往往相互关联,MSI和BRAF突变在致癌过程中发挥关键分子特征的作用。我们的研究结果强调了在治疗靶点中考虑多个相关通路的重要性,尤其是在近端结肠癌中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5629/5474023/2ae790006855/12859_2017_1718_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验