Suppr超能文献

人工智能辅助的青少年心理健康在线社交疗法。

Artificial Intelligence-Assisted Online Social Therapy for Youth Mental Health.

作者信息

D'Alfonso Simon, Santesteban-Echarri Olga, Rice Simon, Wadley Greg, Lederman Reeva, Miles Christopher, Gleeson John, Alvarez-Jimenez Mario

机构信息

Orygen, The National Centre of Excellence in Youth Mental HealthMelbourne, VIC, Australia.

School of Computing and Information Systems, The University of MelbourneMelbourne, VIC, Australia.

出版信息

Front Psychol. 2017 Jun 2;8:796. doi: 10.3389/fpsyg.2017.00796. eCollection 2017.

Abstract

Benefits from mental health early interventions may not be sustained over time, and longer-term intervention programs may be required to maintain early clinical gains. However, due to the high intensity of face-to-face early intervention treatments, this may not be feasible. Adjunctive internet-based interventions specifically designed for youth may provide a cost-effective and engaging alternative to prevent loss of intervention benefits. However, until now online interventions have relied on human moderators to deliver therapeutic content. More sophisticated models responsive to user data are critical to inform tailored online therapy. Thus, integration of user experience with a sophisticated and cutting-edge technology to deliver content is necessary to redefine online interventions in youth mental health. This paper discusses the development of the moderated online social therapy (MOST) web application, which provides an interactive social media-based platform for recovery in mental health. We provide an overview of the system's main features and discus our current work regarding the incorporation of advanced computational and artificial intelligence methods to enhance user engagement and improve the discovery and delivery of therapy content. Our case study is the ongoing Horyzons site (5-year randomized controlled trial for youth recovering from early psychosis), which is powered by MOST. We outline the motivation underlying the project and the web application's foundational features and interface. We discuss system innovations, including the incorporation of pertinent usage patterns as well as identifying certain limitations of the system. This leads to our current motivations and focus on using computational and artificial intelligence methods to enhance user engagement, and to further improve the system with novel mechanisms for the delivery of therapy content to users. In particular, we cover our usage of natural language analysis and chatbot technologies as strategies to tailor interventions and scale up the system. To date, the innovative MOST system has demonstrated viability in a series of clinical research trials. Given the data-driven opportunities afforded by the software system, observed usage patterns, and the aim to deploy it on a greater scale, an important next step in its evolution is the incorporation of advanced and automated content delivery mechanisms.

摘要

心理健康早期干预的益处可能无法长期持续,可能需要长期干预计划来维持早期的临床效果。然而,由于面对面早期干预治疗的强度较高,这可能并不可行。专门为青少年设计的辅助性基于互联网的干预措施可能提供一种经济高效且引人入胜的替代方案,以防止干预益处的丧失。然而,到目前为止,在线干预一直依赖人工主持人来提供治疗内容。响应用户数据的更复杂模型对于提供量身定制的在线治疗至关重要。因此,将用户体验与先进前沿技术相结合以提供内容,对于重新定义青少年心理健康在线干预是必要的。本文讨论了适度在线社交治疗(MOST)网络应用程序的开发,该应用程序为心理健康恢复提供了一个基于交互式社交媒体的平台。我们概述了该系统的主要功能,并讨论了我们目前在纳入先进的计算和人工智能方法以增强用户参与度以及改善治疗内容的发现和提供方面的工作。我们的案例研究是正在进行的Horyzons网站(针对从早期精神病中康复的青少年的5年随机对照试验),该网站由MOST提供支持。我们概述了该项目的动机以及网络应用程序的基本功能和界面。我们讨论了系统创新,包括纳入相关使用模式以及识别系统的某些局限性。这导致了我们目前的动机,并专注于使用计算和人工智能方法来增强用户参与度,并通过向用户提供治疗内容的新颖机制进一步改进系统。特别是,我们介绍了我们使用自然语言分析和聊天机器人技术作为量身定制干预措施和扩大系统规模的策略。迄今为止,创新的MOST系统已在一系列临床研究试验中证明了其可行性。鉴于软件系统提供的数据驱动机会、观察到的使用模式以及将其大规模部署的目标,其发展的一个重要下一步是纳入先进的自动化内容交付机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e603/5454064/5340b1cbfee9/fpsyg-08-00796-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验