Suppr超能文献

蛋白质中的隧穿动力学与非绝热质子耦合电子转移:电场和非谐供体-受体相互作用的影响

Tunneling Kinetics and Nonadiabatic Proton-Coupled Electron Transfer in Proteins: The Effect of Electric Fields and Anharmonic Donor-Acceptor Interactions.

作者信息

Salna Bridget, Benabbas Abdelkrim, Russo Douglas, Champion Paul M

机构信息

Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University , Boston, Massachusetts 02115, United States.

出版信息

J Phys Chem B. 2017 Jul 20;121(28):6869-6881. doi: 10.1021/acs.jpcb.7b05570. Epub 2017 Jul 11.

Abstract

A proper description of proton donor-acceptor (D-A) distance fluctuations is crucial for understanding tunneling in proton-coupled electron transport (PCET). The typical harmonic approximation for the D-A potential results in a Gaussian probability distribution, which does not appropriately reflect the electronic repulsion forces that increase the energetic cost of sampling shorter D-A distances. Because these shorter distances are the primary channel for thermally activated tunneling, the analysis of tunneling kinetics depends sensitively on the inherently anharmonic nature of the D-A interaction. Thus, we have used quantum chemical calculations to account for the D-A interaction and developed an improved model for the analysis of experimental tunneling kinetics. Strong internal electric fields are also considered and found to contribute significantly to the compressive forces when the D-A distance distribution is positioned below the van der Waals contact distance. This model is applied to recent experiments on the wild type (WT) and a double mutant (DM) of soybean lipoxygenase-1 (SLO). The compressive force necessary to prepare the tunneling-active distribution in WT SLO is found to fall in the ∼ nN range, which greatly exceeds the measured values of molecular motor and protein unfolding forces. This indicates that ∼60-100 MV/cm electric fields, aligned along the D-A bond axis, must be generated by an enzyme conformational interconversion that facilitates the PCET tunneling reaction. Based on the absolute value of the measured tunneling rate, and using previously calculated values of the electronic matrix element, the population of this tunneling-active conformation is found to lie in the range 10-10, indicating this is a rare structural fluctuation that falls well below the detection threshold of recent ENDOR experiments. Additional analysis of the DM tunneling kinetics leads to a proposal that a disordered (high entropy) conformation could be tunneling-active due to its broad range of sampled D-A distances.

摘要

对质子供体 - 受体(D - A)距离波动进行恰当描述对于理解质子耦合电子转移(PCET)中的隧穿至关重要。D - A势的典型谐波近似会导致高斯概率分布,这无法恰当地反映电子排斥力,而这种排斥力会增加对较短D - A距离进行采样时的能量成本。由于这些较短距离是热激活隧穿的主要通道,隧穿动力学分析敏感地依赖于D - A相互作用固有的非谐性质。因此,我们使用量子化学计算来考虑D - A相互作用,并开发了一种改进模型用于分析实验隧穿动力学。还考虑了强内部电场,发现当D - A距离分布位于范德华接触距离以下时,内部电场对压缩力有显著贡献。该模型应用于大豆脂氧合酶 - 1(SLO)野生型(WT)和双突变体(DM)的近期实验。发现WT SLO中制备隧穿活性分布所需的压缩力在约nN范围内,这大大超过了分子马达和蛋白质解折叠力的测量值。这表明沿D - A键轴排列的约60 - 100 MV/cm的电场必须由促进PCET隧穿反应的酶构象互变产生。基于测量的隧穿速率绝对值,并使用先前计算的电子矩阵元值,发现这种隧穿活性构象的丰度在10 - 10范围内,表明这是一种罕见的结构波动,远低于近期ENDOR实验的检测阈值。对DM隧穿动力学的进一步分析提出,一种无序(高熵)构象可能因其采样的D - A距离范围广泛而具有隧穿活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验