Suppr超能文献

量子力学/分子力学自由能模拟揭示的大豆脂氧合酶质子耦合电子转移的基本认识。

Fundamental Insights into Proton-Coupled Electron Transfer in Soybean Lipoxygenase from Quantum Mechanical/Molecular Mechanical Free Energy Simulations.

机构信息

Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States.

Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States.

出版信息

J Am Chem Soc. 2018 Feb 28;140(8):3068-3076. doi: 10.1021/jacs.7b13642. Epub 2018 Feb 19.

Abstract

The proton-coupled electron transfer (PCET) reaction catalyzed by soybean lipoxygenase has served as a prototype for understanding hydrogen tunneling in enzymes. Herein this PCET reaction is studied with mixed quantum mechanical/molecular mechanical (QM/MM) free energy simulations. The free energy surfaces are computed as functions of the proton donor-acceptor (C-O) distance and the proton coordinate, and the potential of mean force is computed as a function of the C-O distance, inherently including anharmonicity. The simulation results are used to calculate the kinetic isotope effects for the wild-type enzyme (WT) and the L546A/L754A double mutant (DM), which have been measured experimentally to be ∼80 and ∼700, respectively. The PCET reaction is found to be exoergic for WT and slightly endoergic for the DM, and the equilibrium C-O distance for the reactant is found to be ∼0.2 Å greater for the DM than for WT. The larger equilibrium distance for the DM, which is due mainly to less optimal substrate binding in the expanded binding cavity, is primarily responsible for its higher kinetic isotope effect. The calculated potentials of mean force are anharmonic and relatively soft at shorter C-O distances, allowing efficient thermal sampling of the shorter distances required for effective hydrogen tunneling. The primarily local electrostatic field at the transferring hydrogen is ∼100 MV/cm in the direction to facilitate proton transfer and increases dramatically as the C-O distance decreases. These simulations suggest that the overall protein environment is important for conformational sampling of active substrate configurations aligned for proton transfer, but the PCET reaction is influenced primarily by local electrostatic effects that facilitate conformational sampling of shorter proton donor-acceptor distances required for effective hydrogen tunneling.

摘要

大豆脂氧合酶催化的质子偶联电子转移 (PCET) 反应已成为理解酶中氢隧穿的原型。在此,通过混合量子力学/分子力学 (QM/MM) 自由能模拟研究了该 PCET 反应。自由能表面作为质子供体-受体 (C-O) 距离和质子坐标的函数进行计算,势函数作为 C-O 距离的函数进行计算,内在地包括非谐性。模拟结果用于计算野生型酶 (WT) 和 L546A/L754A 双突变体 (DM) 的动力学同位素效应,实验测量值分别约为 80 和 700。发现 WT 的 PCET 反应是放热的,而 DM 则略微是吸热的,并且对于 DM,反应物的平衡 C-O 距离比 WT 大约 0.2 Å。DM 的较大平衡距离主要是由于扩展的结合腔中底物结合不太理想,这主要导致其更高的动力学同位素效应。计算得到的势函数是非谐的,在较短的 C-O 距离处相对较软,允许有效地对有效氢隧穿所需的较短距离进行热采样。在转移氢的主要局部静电场在促进质子转移的方向上约为 100 MV/cm,并随着 C-O 距离的减小而急剧增加。这些模拟表明,整体蛋白质环境对于为质子转移对齐的活性底物构象的构象采样很重要,但是 PCET 反应主要受促进有效氢隧穿所需较短质子供体-受体距离构象采样的局部静电效应影响。

相似文献

2
Proton-coupled electron transfer in soybean lipoxygenase.
J Am Chem Soc. 2004 May 12;126(18):5763-75. doi: 10.1021/ja039606o.
4
Density-functional investigation on the mechanism of H-atom abstraction by lipoxygenase.
J Biol Inorg Chem. 2003 Feb;8(3):294-305. doi: 10.1007/s00775-002-0415-6. Epub 2002 Nov 14.
6
Hydrogen tunneling and protein motion in enzyme reactions.
Acc Chem Res. 2006 Feb;39(2):93-100. doi: 10.1021/ar040199a.
7
Impact of Mutations on the Binding Pocket of Soybean Lipoxygenase: Implications for Proton-Coupled Electron Transfer.
J Phys Chem Lett. 2018 Nov 15;9(22):6444-6449. doi: 10.1021/acs.jpclett.8b02945. Epub 2018 Oct 29.

引用本文的文献

1
A Foundational Shift in Models for Enzyme Function.
J Am Chem Soc. 2025 May 7;147(18):14884-14904. doi: 10.1021/jacs.5c02388. Epub 2025 Apr 25.
2
Physics-based modeling in the new era of enzyme engineering.
Nat Comput Sci. 2025 Apr;5(4):279-291. doi: 10.1038/s43588-025-00788-8. Epub 2025 Apr 24.
3
Explaining Kinetic Isotope Effects in Proton-Coupled Electron Transfer Reactions.
Acc Chem Res. 2025 Apr 15;58(8):1335-1344. doi: 10.1021/acs.accounts.5c00119. Epub 2025 Apr 4.
4
Delayed-Onset Muscle Soreness Begins with a Transient Neural Switch.
Int J Mol Sci. 2025 Mar 5;26(5):2319. doi: 10.3390/ijms26052319.
7
Surface-Accelerated String Method for Locating Minimum Free Energy Paths.
J Chem Theory Comput. 2024 Mar 12;20(5):2058-2073. doi: 10.1021/acs.jctc.3c01401. Epub 2024 Feb 17.
8
Probing Nonadiabaticity of Proton-Coupled Electron Transfer in Ribonucleotide Reductase.
J Phys Chem Lett. 2024 Feb 15;15(6):1686-1693. doi: 10.1021/acs.jpclett.3c03552. Epub 2024 Feb 5.
9
Exploring Proton-Coupled Electron Transfer at Multiple Scales.
Nat Comput Sci. 2023 Apr;3(4):291-300. doi: 10.1038/s43588-023-00422-5. Epub 2023 Apr 6.
10
Proton transfer reactions: From photochemistry to biochemistry and bioenergetics.
BBA Adv. 2023 Mar 9;3:100085. doi: 10.1016/j.bbadva.2023.100085. eCollection 2023.

本文引用的文献

3
C ENDOR Spectroscopy of Lipoxygenase-Substrate Complexes Reveals the Structural Basis for C-H Activation by Tunneling.
J Am Chem Soc. 2017 Feb 8;139(5):1984-1997. doi: 10.1021/jacs.6b11856. Epub 2017 Jan 25.
6
ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB.
J Chem Theory Comput. 2015 Aug 11;11(8):3696-713. doi: 10.1021/acs.jctc.5b00255. Epub 2015 Jul 23.
7
Systematic Parameterization of Monovalent Ions Employing the Nonbonded Model.
J Chem Theory Comput. 2015 Apr 14;11(4):1645-57. doi: 10.1021/ct500918t. Epub 2015 Mar 13.
8
Dependence of Vibronic Coupling on Molecular Geometry and Environment: Bridging Hydrogen Atom Transfer and Electron-Proton Transfer.
J Am Chem Soc. 2015 Oct 28;137(42):13545-55. doi: 10.1021/jacs.5b07327. Epub 2015 Oct 13.
10
Probing Nonadiabaticity in the Proton-Coupled Electron Transfer Reaction Catalyzed by Soybean Lipoxygenase.
J Phys Chem Lett. 2014 Sep 18;5(18):3274-3278. doi: 10.1021/jz501655v. Epub 2014 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验