Suppr超能文献

基于纳米光子学的太阳能膜蒸馏技术用于离网式水净化。

Nanophotonics-enabled solar membrane distillation for off-grid water purification.

机构信息

Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005.

Laboratory for Nanophotonics, Rice University, Houston, TX 77005.

出版信息

Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):6936-6941. doi: 10.1073/pnas.1701835114. Epub 2017 Jun 19.

Abstract

With more than a billion people lacking accessible drinking water, there is a critical need to convert nonpotable sources such as seawater to water suitable for human use. However, energy requirements of desalination plants account for half their operating costs, so alternative, lower energy approaches are equally critical. Membrane distillation (MD) has shown potential due to its low operating temperature and pressure requirements, but the requirement of heating the input water makes it energy intensive. Here, we demonstrate nanophotonics-enabled solar membrane distillation (NESMD), where highly localized photothermal heating induced by solar illumination alone drives the distillation process, entirely eliminating the requirement of heating the input water. Unlike MD, NESMD can be scaled to larger systems and shows increased efficiencies with decreased input flow velocities. Along with its increased efficiency at higher ambient temperatures, these properties all point to NESMD as a promising solution for household- or community-scale desalination.

摘要

由于有超过 10 亿人缺乏可获取的饮用水,因此迫切需要将非饮用水源(如海水)转化为适合人类使用的水。然而,海水淡化厂的能源需求占其运营成本的一半,因此替代的、低能耗方法同样至关重要。膜蒸馏(MD)因其低工作温度和压力要求而显示出潜力,但输入水的加热要求使其具有能源密集型。在这里,我们展示了基于纳米光子学的太阳能膜蒸馏(NESMD),其中仅由太阳辐照引起的高度局域光热加热驱动蒸馏过程,完全消除了对输入水加热的要求。与 MD 不同,NESMD 可以扩展到更大的系统,并随着输入流速的降低而提高效率。除了在较高环境温度下的效率提高之外,这些特性都表明 NESMD 是家庭或社区规模海水淡化的一种很有前途的解决方案。

相似文献

2
Scaling Resistance in Nanophotonics-Enabled Solar Membrane Distillation.纳米光子学增强太阳能膜蒸馏中的抗缩放问题。
Environ Sci Technol. 2020 Feb 18;54(4):2548-2555. doi: 10.1021/acs.est.9b07622. Epub 2020 Feb 7.

引用本文的文献

3
Challenges and prospects of plasmonic metasurfaces for photothermal catalysis.用于光热催化的等离激元超表面的挑战与前景
Nanophotonics. 2022 May 23;11(13):3035-3056. doi: 10.1515/nanoph-2022-0073. eCollection 2022 Jun.

本文引用的文献

1
Photothermal Membrane Distillation for Seawater Desalination.光热膜蒸馏用于海水淡化。
Adv Mater. 2017 Jan;29(2). doi: 10.1002/adma.201603504. Epub 2016 Nov 7.
3
Energy Consumption by Recirculation: A Missing Parameter When Evaluating Forward Osmosis.循环能耗:评估正向渗透时缺失的参数
Environ Sci Technol. 2016 Jul 5;50(13):6827-9. doi: 10.1021/acs.est.6b02849. Epub 2016 Jun 23.
4
Four billion people facing severe water scarcity.四十亿人面临严重水资源短缺。
Sci Adv. 2016 Feb 12;2(2):e1500323. doi: 10.1126/sciadv.1500323. eCollection 2016 Feb.
6
Nanoparticles heat through light localization.纳米粒子通过光定位加热。
Nano Lett. 2014 Aug 13;14(8):4640-5. doi: 10.1021/nl5016975. Epub 2014 Jun 30.
7
Effectiveness of water desalination by membrane distillation process.膜蒸馏法海水淡化的有效性
Membranes (Basel). 2012 Jul 17;2(3):415-29. doi: 10.3390/membranes2030415.
8
Solar vapor generation enabled by nanoparticles.纳米颗粒助力太阳能蒸汽发生。
ACS Nano. 2013 Jan 22;7(1):42-9. doi: 10.1021/nn304948h. Epub 2012 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验