Harris Joe, Böhm Corinna F, Wolf Stephan E
Department of Materials Science and Engineering, Institute of Glass and Ceramics (WW3), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Martensstrasse 5, 91058 Erlangen, Germany.
Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Haberstrasse 9a, 91058 Erlangen, Germany.
Interface Focus. 2017 Aug 6;7(4):20160120. doi: 10.1098/rsfs.2016.0120. Epub 2017 Jun 16.
Biominerals are typically indispensable structures for their host organism in which they serve varying functions, such as mechanical support and protection, mineral storage, detoxification site, or as a sensor or optical guide. In this perspective article, we highlight the occurrence of both structural diversity and uniformity within these biogenic ceramics. For the first time, we demonstrate that the universality-diversity paradigm, which was initially introduced for proteins by Buehler . (Cranford & Buehler 2012 ; Cranford 2013 , 802-824 (doi:10.1002/adma.201202553); Ackbarow & Buehler 2008 , 1193-1204 (doi:10.1166/jctn.2008.001); Buehler & Yung 2009 , 175-188 (doi:10.1038/nmat2387)), is also valid in the realm of biomineralization. A nanogranular composite structure is shared by most biominerals which rests on a common, non-classical crystal growth mechanism. The nanogranular composite structure affects various properties of the macroscale biogenic ceramic, a phenomenon we attribute to emergence. Emergence, in turn, is typical for hierarchically organized materials. This is a clear call to renew comparative studies of even distantly related biomineralizing organisms to identify further universal design motifs and their associated emergent properties. Such universal motifs with emergent macro-scale properties may represent an unparalleled toolbox for the efficient design of bioinspired functional materials.
生物矿物对于其宿主生物体而言通常是不可或缺的结构,它们发挥着各种功能,如机械支撑和保护、矿物质储存、解毒场所,或作为传感器或光学导向器。在这篇观点文章中,我们强调了这些生物陶瓷中结构多样性和统一性的存在。我们首次证明,最初由比勒引入蛋白质领域的普遍性 - 多样性范式(克兰福德和比勒,2012年;克兰福德,2013年,802 - 824页(doi:10.1002/adma.201202553);阿克巴罗和比勒,2008年,1193 - 1204页(doi:10.1166/jctn.2008.001);比勒和容,2009年,175 - 188页(doi:10.1038/nmat2387))在生物矿化领域也是有效的。大多数生物矿物都具有纳米颗粒复合结构,这种结构基于一种常见的、非经典的晶体生长机制。纳米颗粒复合结构影响宏观尺度生物陶瓷的各种性质,我们将这种现象归因于涌现。反过来,涌现是层次组织材料的典型特征。这明确呼吁更新对甚至亲缘关系甚远的生物矿化生物体的比较研究,以识别更多通用设计模式及其相关的涌现性质。这种具有涌现宏观性质的通用模式可能代表了一个用于高效设计受生物启发的功能材料的无与伦比的工具箱。