Suppr超能文献

一种用于根据重复的不完美检测结果对累积发病率函数进行非参数估计的期望最大化(EM)算法。

An EM algorithm for nonparametric estimation of the cumulative incidence function from repeated imperfect test results.

作者信息

Witte Birgit I, Berkhof Johannes, Jonker Marianne A

机构信息

Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, The Netherlands.

Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.

出版信息

Stat Med. 2017 Sep 20;36(21):3412-3421. doi: 10.1002/sim.7373. Epub 2017 Jun 20.

Abstract

In screening and surveillance studies, event times are interval censored. Besides, screening tests are imperfect so that the interval at which an event takes place may be uncertain. We describe an expectation-maximization algorithm to find the nonparametric maximum likelihood estimator of the cumulative incidence function of an event based on screening test data. Our algorithm has a closed-form solution for the combined expectation and maximization step and is computationally undemanding. A simulation study indicated that the bias of the estimator tends to zero for large sample size, and its mean squared error is in general lower than the mean squared error of the estimator that assumes the screening test is perfect. We apply the algorithm to follow-up data from women treated for cervical precancer. Copyright © 2017 John Wiley & Sons, Ltd.

摘要

在筛查和监测研究中,事件发生时间是区间删失的。此外,筛查测试并不完美,因此事件发生的时间间隔可能不确定。我们描述了一种期望最大化算法,用于基于筛查测试数据找到事件累积发病率函数的非参数最大似然估计量。我们的算法在期望和最大化步骤的组合上有一个封闭形式的解,并且计算量不大。一项模拟研究表明,对于大样本量,估计量的偏差趋于零,并且其均方误差通常低于假设筛查测试完美的估计量的均方误差。我们将该算法应用于宫颈癌前病变治疗女性的随访数据。版权所有© 2017约翰·威利父子有限公司。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验