Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14476, Germany.
Institut de Chimie et des Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), ECPM, CNRS-Université de Strasbourg (UdS) UMR 7515, 25, rue Becquerel, Strasbourg, 67087, France.
Adv Mater. 2017 Aug;29(32). doi: 10.1002/adma.201700555. Epub 2017 Jun 20.
Cost-efficient, visible-light-driven hydrogen production from water is an attractive potential source of clean, sustainable fuel. Here, it is shown that thermal solid state reactions of traditional carbon nitride precursors (cyanamide, melamine) with NaCl, KCl, or CsCl are a cheap and straightforward way to prepare poly(heptazine imide) alkali metal salts, whose thermodynamic stability decreases upon the increase of the metal atom size. The chemical structure of the prepared salts is confirmed by the results of X-ray photoelectron and infrared spectroscopies, powder X-ray diffraction and electron microscopy studies, and, in the case of sodium poly(heptazine imide), additionally by atomic pair distribution function analysis and 2D powder X-ray diffraction pattern simulations. In contrast, reactions with LiCl yield thermodynamically stable poly(triazine imides). Owing to the metastability and high structural order, the obtained heptazine imide salts are found to be highly active photocatalysts in Rhodamine B and 4-chlorophenol degradation, and Pt-assisted sacrificial water reduction reactions under visible light irradiation. The measured hydrogen evolution rates are up to four times higher than those provided by a benchmark photocatalyst, mesoporous graphitic carbon nitride. Moreover, the products are able to photocatalytically reduce water with considerable reaction rates, even when glycerol is used as a sacrificial hole scavenger.
从水中高效、可见光驱动的氢气生产是一种有吸引力的清洁、可持续燃料潜在来源。本文表明,传统碳氮化物前体(氰胺、三聚氰胺)与 NaCl、KCl 或 CsCl 的热固态反应是一种廉价且简单的方法,可以制备聚(庚嗪亚胺)碱金属盐,其热力学稳定性随着金属原子尺寸的增加而降低。通过 X 射线光电子和红外光谱、粉末 X 射线衍射和电子显微镜研究以及在制备的钠离子聚(庚嗪亚胺)的情况下,通过原子对分布函数分析和二维粉末 X 射线衍射图谱模拟的结果,证实了所制备的盐的化学结构。相比之下,与 LiCl 的反应会生成热力学稳定的聚(三嗪亚胺)。由于亚稳性和高结构有序性,所获得的庚嗪亚胺盐被发现是在 Rhodamine B 和 4-氯苯酚降解以及可见光照射下 Pt 辅助牺牲水还原反应中具有高活性的光催化剂。测量的氢气产生速率比基准光催化剂介孔石墨碳氮化物提供的速率高四倍。此外,即使使用甘油作为牺牲空穴清除剂,产物也能够以相当高的反应速率进行光催化还原水。