Zeradjanin Aleksandar R, Vimalanandan Ashokanand, Polymeros George, Topalov Angel A, Mayrhofer Karl J J, Rohwerder Michael
Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058 Erlangen, Germany.
Phys Chem Chem Phys. 2017 Jul 14;19(26):17019-17027. doi: 10.1039/c7cp03081a. Epub 2017 Jun 21.
A major step in the development of (electro)catalysis would be the possibility to estimate accurately the energetics of adsorption processes related to reaction intermediates. Computational chemistry (e.g. using DFT) developed significantly in that direction and allowed the fast prediction of (electro)catalytic activity trends and improved the general understanding of adsorption at electrochemical interfaces. However, building a reliable and comprehensive picture of electrocatalytic reactions undoubtedly requires experimental assessment of adsorption energies. In this way, the results obtained by computational chemistry can be complemented or challenged, which often is a necessary pathway to further advance the understanding of electrochemical interfaces. In this work an interfacial descriptor of the electrocatalytic activity for hydrogen evolution reaction, analogue to the adsorption energy of the H intermediate, is identified experimentally using in situ probing of the surface potentials of the metals, under conditions of continuous control of the humidity and the gas exposure. The derived activity trends give clear indication that the electrocatalytic activity for hydrogen evolution reaction is a consequence of an interplay between metal-hydrogen and metal-water interactions. In other words it is shown that the M-H bond formation strongly depends on the nature of the metal-water interaction. In fact, it seems that water dipoles at the metal/electrolyte interface play a critical role for electron and proton transfer in the double layer.
(电)催化发展中的一个重要步骤是能够准确估计与反应中间体相关的吸附过程的能量学。计算化学(例如使用密度泛函理论)在这方面有了显著发展,能够快速预测(电)催化活性趋势,并增进了对电化学界面吸附的总体理解。然而,要全面可靠地描绘电催化反应,无疑需要对吸附能进行实验评估。这样一来,计算化学所得结果就能得到补充或验证,这往往是进一步深化对电化学界面理解的必要途径。在这项工作中,通过在湿度和气体暴露持续可控的条件下对金属表面电位进行原位探测,实验确定了析氢反应电催化活性的一种界面描述符,类似于H中间体的吸附能。所得活性趋势清楚地表明,析氢反应的电催化活性是金属 - 氢相互作用与金属 - 水相互作用共同作用的结果。换句话说,研究表明M - H键的形成强烈依赖于金属 - 水相互作用的性质。实际上,金属/电解质界面处的水偶极似乎对双层中的电子和质子转移起着关键作用。