Manae Meghna A, Dheer Lakshay, Waghmare Umesh V
Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, 560064 India.
Trans Indian Natl Acad Eng. 2022;7(1):1-11. doi: 10.1007/s41403-021-00262-7. Epub 2021 Aug 31.
Reducing levels of CO, a greenhouse gas, in the earth's atmosphere is crucial to addressing the problem of climate change. An effective strategy to achieve this without compromising the scale of industrial activity involves use of renewable energy and waste heat in conversion of CO to useful products. In this perspective, we present quantum mechanical and machine learning approaches to tackle various aspects of thermocatalytic reduction of CO to methanol, using H as a reducing agent. Waste heat can be utilized effectively in the thermocatalytic process, and H can be generated using solar energy in electrolytic, photocatalytic and photoelectrocatalytic processes. Methanol being a readily usable fuel in automobiles, this technology achieves (a) carbon recycling process, (b) use of renewable energy, and (c) portable storage of H for applications in automobiles, alleviating the problem of rising CO emissions and levels in atmosphere.
降低地球大气中温室气体一氧化碳(CO)的含量对于解决气候变化问题至关重要。在不影响工业活动规模的情况下实现这一目标的有效策略包括在将CO转化为有用产品的过程中使用可再生能源和废热。从这个角度出发,我们提出了量子力学和机器学习方法,以解决以H作为还原剂将CO热催化还原为甲醇的各个方面。废热可以在热催化过程中得到有效利用,并且可以在电解、光催化和光电催化过程中利用太阳能产生H。甲醇是汽车中易于使用的燃料,这项技术实现了(a)碳循环过程,(b)可再生能源的利用,以及(c)用于汽车应用的H的便携式存储,缓解了大气中CO排放量和水平上升的问题。