Suppr超能文献

利用可重构 DNA 纳米笼对脂质体进行定位和塑形。

Placing and shaping liposomes with reconfigurable DNA nanocages.

机构信息

Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA.

Nanobiology Institute, Yale University; West Haven, Connecticut 06516, USA.

出版信息

Nat Chem. 2017 Jun 23;9(7):653-659. doi: 10.1038/nchem.2802.

Abstract

The diverse structure and regulated deformation of lipid bilayer membranes are among a cell's most fascinating features. Artificial membrane-bound vesicles, known as liposomes, are versatile tools for modelling biological membranes and delivering foreign objects to cells. To fully mimic the complexity of cell membranes and optimize the efficiency of delivery vesicles, controlling liposome shape (both statically and dynamically) is of utmost importance. Here we report the assembly, arrangement and remodelling of liposomes with designer geometry: all of which are exquisitely controlled by a set of modular, reconfigurable DNA nanocages. Tubular and toroid shapes, among others, are transcribed from DNA cages to liposomes with high fidelity, giving rise to membrane curvatures present in cells yet previously difficult to construct in vitro. Moreover, the conformational changes of DNA cages drive membrane fusion and bending with predictable outcomes, opening up opportunities for the systematic study of membrane mechanics.

摘要

脂质双层膜的多样结构和调控变形是细胞最迷人的特征之一。人工膜结合囊泡,即脂质体,是模拟生物膜和将外源物质递送到细胞的多功能工具。为了充分模拟细胞膜的复杂性并优化递药囊泡的效率,控制脂质体的形状(静态和动态)至关重要。在这里,我们报告了具有设计几何形状的脂质体的组装、排列和重塑:所有这些都由一组模块化、可重构的 DNA 纳米笼精确控制。管状和环形等形状都是从 DNA 笼转录到脂质体上的,具有很高的保真度,产生了存在于细胞中的膜曲率,但以前在体外很难构建。此外,DNA 笼的构象变化驱动膜融合和弯曲,具有可预测的结果,为膜力学的系统研究开辟了机会。

相似文献

3
Actuating tension-loaded DNA clamps drives membrane tubulation.张紧负载 DNA 夹驱动细胞膜的管状化。
Sci Adv. 2022 Oct 14;8(41):eadd1830. doi: 10.1126/sciadv.add1830. Epub 2022 Oct 12.
4
DNA nanostructures interacting with lipid bilayer membranes.DNA 纳米结构与脂质双层膜相互作用。
Acc Chem Res. 2014 Jun 17;47(6):1807-15. doi: 10.1021/ar500051r. Epub 2014 May 14.
8
9

引用本文的文献

1
Programmable Liposome Organization via DNA Origami Templates.通过DNA折纸模板实现可编程脂质体组装
J Am Chem Soc. 2025 Jul 16;147(28):24548-24554. doi: 10.1021/jacs.5c05196. Epub 2025 Jul 2.
3
A DNA Origami Bubble Blower for Liposome Production.一种用于脂质体生产的DNA折纸气泡吹制器。
ACS Omega. 2024 Oct 17;9(43):43609-43615. doi: 10.1021/acsomega.4c05297. eCollection 2024 Oct 29.
5
Encoding signal propagation on topology-programmed DNA origami.拓扑编程DNA折纸结构上的编码信号传播
Nat Chem. 2024 Sep;16(9):1408-1417. doi: 10.1038/s41557-024-01565-2. Epub 2024 Jun 17.
8
Lipid vesicle-based molecular robots.基于脂质囊泡的分子机器人。
Lab Chip. 2024 Feb 27;24(5):996-1029. doi: 10.1039/d3lc00860f.
10
Programmable multispecific DNA-origami-based T-cell engagers.可编程多特异性 DNA 折纸基 T 细胞衔接器。
Nat Nanotechnol. 2023 Nov;18(11):1319-1326. doi: 10.1038/s41565-023-01471-7. Epub 2023 Aug 17.

本文引用的文献

1
Low energy cost for optimal speed and control of membrane fusion.实现膜融合最佳速度和控制所需的低能量成本。
Proc Natl Acad Sci U S A. 2017 Feb 7;114(6):1238-1241. doi: 10.1073/pnas.1621309114. Epub 2017 Jan 23.
2
Cuboid Vesicles Formed by Frame-Guided Assembly on DNA Origami Scaffolds.DNA 折纸支架引导的框架组装形成的多面体型囊泡。
Angew Chem Int Ed Engl. 2017 Feb 1;56(6):1586-1589. doi: 10.1002/anie.201610133. Epub 2016 Dec 30.
3
NANOTECHNOLOGY. Changing of the guard.纳米技术。新旧交替。
Science. 2016 May 20;352(6288):890-1. doi: 10.1126/science.aaf5154.
5
From Nano to Macro through Hierarchical Self-Assembly: The DNA Paradigm.从纳米到宏观的分级自组装:DNA范式
Chembiochem. 2016 Jun 16;17(12):1063-80. doi: 10.1002/cbic.201600034. Epub 2016 May 17.
9
Computational Approaches to Nucleic Acid Origami.核酸折纸术的计算方法
ACS Comb Sci. 2015 Oct 12;17(10):535-47. doi: 10.1021/acscombsci.5b00079. Epub 2015 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验