Ocker Gabriel Koch, Josić Krešimir, Shea-Brown Eric, Buice Michael A
Allen Institute for Brain Science, Seattle, Washington, United States of America.
Department of Mathematics and Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America.
PLoS Comput Biol. 2017 Jun 23;13(6):e1005583. doi: 10.1371/journal.pcbi.1005583. eCollection 2017 Jun.
Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks' spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities-including those of different cell types-combine with connectivity to shape population activity and function.
最近的实验进展正在产生关于神经连接性和神经活动的大量数据。为了充分利用这两个新出现的数据集,我们需要一个将它们联系起来的框架,揭示集体神经活动是如何从神经连接结构和内在神经动力学中产生的。这个结构驱动活动的问题在计算神经科学中引起了极大的兴趣。现有的用于关联脉冲神经网络中活动和结构的方法依赖于在一个中心工作点周围对活动进行线性化,因此无法捕捉单个神经元的非线性响应,而这种非线性响应是神经信息处理的标志。在这里,我们克服了这一局限性,通过基于统计场论开发一种图解涨落展开,提出了非线性脉冲神经元网络中连接性与活动之间的新关系。我们明确展示了循环网络结构如何产生成对和高阶相关活动,以及非线性如何影响网络的脉冲活动。我们的发现为研究单个神经元的非线性(包括不同细胞类型的非线性)如何与连接性相结合以塑造群体活动和功能开辟了新途径。