Ross Lauren N, Jirsa Viktor, McIntosh Anthony R
Logic and Philosophy of Science, University of California, Irvine, California, USA.
Institut de Neuroscience des Systèmes, Aix-Marseille Universite, Marseille, France.
Eur J Neurosci. 2025 Mar;61(5):e70038. doi: 10.1111/ejn.70038.
Although the brain is often characterized as a complex system, theoretical and philosophical frameworks often struggle to capture this. For example, mainstream mechanistic accounts model neural systems as fixed and static in ways that fail to capture their dynamic nature and large set of possible behaviors. In this paper, we provide a framework for capturing a common type of complex system in neuroscience, which involves two main aspects: (i) constraints on the system and (ii) the system's possibility space of available outcomes. Our analysis merges neuroscience examples with recent work in the philosophy of science to suggest that the possibility space concept involves two essential types of constraints, which we call hard and soft constraints. Our analysis focuses on a domain-general notion of possibility space that is present in manifold frameworks and representations, phase space diagrams in dynamical systems theory, and paradigmatic cases, such as Waddington's epigenetic landscape model. After building the framework with such cases, we apply it to three main examples in neuroscience: adaptability, resilience, and phenomenology. We explore how this framework supports a philosophical toolkit for neuroscience and how it helps advance recent work in the philosophy of science on constraints, scientific explanations, and impossibility explanations. We show how fruitful connections between neuroscience and philosophy can support conceptual clarity, theoretical advances, and the identification of similar systems across different domains in neuroscience.
尽管大脑常被描述为一个复杂系统,但理论和哲学框架往往难以把握这一点。例如,主流的机械论解释将神经系统建模为固定和静态的,却未能捕捉到它们的动态本质以及大量可能的行为。在本文中,我们提供了一个用于把握神经科学中一种常见复杂系统类型的框架,它涉及两个主要方面:(i)对系统的约束,以及(ii)系统可得结果的可能性空间。我们的分析将神经科学实例与科学哲学的最新研究相结合,以表明可能性空间概念涉及两种基本类型的约束,我们称之为硬约束和软约束。我们的分析聚焦于可能性空间的一个领域通用概念,它存在于多种框架和表征、动力系统理论中的相空间图以及范例案例中,比如沃丁顿的表观遗传景观模型。在用此类案例构建框架之后,我们将其应用于神经科学中的三个主要例子:适应性、恢复力和现象学。我们探讨这个框架如何支持神经科学的哲学工具包,以及它如何有助于推进科学哲学中关于约束、科学解释和不可能性解释的近期研究。我们展示了神经科学与哲学之间富有成效的联系如何能够支持概念的清晰性、理论的进步,以及神经科学中不同领域相似系统的识别。