Suppr超能文献

酿酒酵母通过通用辅阻遏物Tup1-Cyc8功能障碍获得同化甘露醇的能力。

Acquisition of the ability to assimilate mannitol by Saccharomyces cerevisiae through dysfunction of the general corepressor Tup1-Cyc8.

作者信息

Chujo Moeko, Yoshida Shiori, Ota Anri, Murata Kousaku, Kawai Shigeyuki

机构信息

Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan.

Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan

出版信息

Appl Environ Microbiol. 2015 Jan;81(1):9-16. doi: 10.1128/AEM.02906-14. Epub 2014 Oct 10.

Abstract

Saccharomyces cerevisiae normally cannot assimilate mannitol, a promising brown macroalgal carbon source for bioethanol production. The molecular basis of this inability remains unknown. We found that cells capable of assimilating mannitol arose spontaneously from wild-type S. cerevisiae during prolonged culture in mannitol-containing medium. Based on microarray data, complementation analysis, and cell growth data, we demonstrated that acquisition of mannitol-assimilating ability was due to spontaneous mutations in the genes encoding Tup1 or Cyc8, which constitute a general corepressor complex that regulates many kinds of genes. We also showed that an S. cerevisiae strain carrying a mutant allele of CYC8 exhibited superior salt tolerance relative to other ethanologenic microorganisms; this characteristic would be highly beneficial for the production of bioethanol from marine biomass. Thus, we succeeded in conferring the ability to assimilate mannitol on S. cerevisiae through dysfunction of Tup1-Cyc8, facilitating production of ethanol from mannitol.

摘要

酿酒酵母通常无法利用甘露醇,而甘露醇是一种很有前景的用于生物乙醇生产的大型褐藻碳源。这种无法利用的分子基础仍然未知。我们发现,在含甘露醇的培养基中长时间培养期间,能够利用甘露醇的细胞从野生型酿酒酵母中自发产生。基于微阵列数据、互补分析和细胞生长数据,我们证明,获得甘露醇利用能力是由于编码Tup1或Cyc8的基因发生了自发突变,Tup1和Cyc8构成一个调控多种基因的通用共抑制复合物。我们还表明,携带CYC8突变等位基因的酿酒酵母菌株相对于其他产乙醇微生物表现出更强的耐盐性;这一特性对于从海洋生物质生产生物乙醇将非常有益。因此,我们通过Tup1-Cyc8功能失调成功赋予了酿酒酵母利用甘露醇的能力,促进了从甘露醇生产乙醇。

相似文献

1
5
Identification of Tup1 and Cyc8 mutations defective in the responses to osmotic stress.
Biochem Biophys Res Commun. 2008 Mar 28;368(1):50-5. doi: 10.1016/j.bbrc.2008.01.033. Epub 2008 Jan 15.

引用本文的文献

2
Bacteria with a mouth: Discovery and new insights into cell surface structure and macromolecule transport.
Proc Jpn Acad Ser B Phys Biol Sci. 2022;98(10):529-552. doi: 10.2183/pjab.98.027.
4
Yeast osmoregulation - glycerol still in pole position.
FEMS Yeast Res. 2022 Aug 30;22(1). doi: 10.1093/femsyr/foac035.
6
Convergence between Regulation of Carbon Utilization and Catabolic Repression in .
mSphere. 2020 Apr 1;5(2):e00065-20. doi: 10.1128/mSphere.00065-20.
7
Cyc8p and Tup1p transcription regulators antagonistically regulate Flo11p expression and complexity of yeast colony biofilms.
PLoS Genet. 2018 Jul 2;14(7):e1007495. doi: 10.1371/journal.pgen.1007495. eCollection 2018 Jul.
10
Improved Xylose Metabolism by a Mutant of Saccharomyces cerevisiae.
Appl Environ Microbiol. 2017 May 17;83(11). doi: 10.1128/AEM.00095-17. Print 2017 Jun 1.

本文引用的文献

1
Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform.
Nature. 2014 Jan 9;505(7482):239-43. doi: 10.1038/nature12771. Epub 2013 Dec 1.
2
Production of ethanol from mannitol by the yeast strain Saccharomyces paradoxus NBRC 0259.
J Biosci Bioeng. 2013 Sep;116(3):327-32. doi: 10.1016/j.jbiosc.2013.03.018. Epub 2013 Apr 28.
3
Crystal structure of the N-terminal domain of the yeast general corepressor Tup1p and its functional implications.
J Biol Chem. 2012 Aug 3;287(32):26528-38. doi: 10.1074/jbc.M112.369652. Epub 2012 Jun 15.
4
An engineered microbial platform for direct biofuel production from brown macroalgae.
Science. 2012 Jan 20;335(6066):308-13. doi: 10.1126/science.1214547.
5
Shields up: the Tup1-Cyc8 repressor complex blocks coactivator recruitment.
Genes Dev. 2011 Dec 1;25(23):2429-35. doi: 10.1101/gad.181768.111.
6
Trait variation in yeast is defined by population history.
PLoS Genet. 2011 Jun;7(6):e1002111. doi: 10.1371/journal.pgen.1002111. Epub 2011 Jun 16.
7
Ethanol production from marine algal hydrolysates using Escherichia coli KO11.
Bioresour Technol. 2011 Aug;102(16):7466-9. doi: 10.1016/j.biortech.2011.04.071. Epub 2011 Apr 24.
8
Flocculation in Saccharomyces cerevisiae: a review.
J Appl Microbiol. 2011 Jan;110(1):1-18. doi: 10.1111/j.1365-2672.2010.04897.x. Epub 2010 Nov 29.
9
Micro and macroalgal biomass: a renewable source for bioethanol.
Bioresour Technol. 2011 Jan;102(1):186-93. doi: 10.1016/j.biortech.2010.06.139.
10
Transcriptional repression by Tup1-Ssn6.
Biochem Cell Biol. 2006 Aug;84(4):437-43. doi: 10.1139/o06-073.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验