Suppr超能文献

动态系统马尔可夫链蒙特卡罗方法的综合基准测试

Comprehensive benchmarking of Markov chain Monte Carlo methods for dynamical systems.

作者信息

Ballnus Benjamin, Hug Sabine, Hatz Kathrin, Görlitz Linus, Hasenauer Jan, Theis Fabian J

机构信息

Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Computational Biology, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.

Technische Universität München, Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, Boltzmannstraße 15, Garching, 85748, Germany.

出版信息

BMC Syst Biol. 2017 Jun 24;11(1):63. doi: 10.1186/s12918-017-0433-1.

Abstract

BACKGROUND

In quantitative biology, mathematical models are used to describe and analyze biological processes. The parameters of these models are usually unknown and need to be estimated from experimental data using statistical methods. In particular, Markov chain Monte Carlo (MCMC) methods have become increasingly popular as they allow for a rigorous analysis of parameter and prediction uncertainties without the need for assuming parameter identifiability or removing non-identifiable parameters. A broad spectrum of MCMC algorithms have been proposed, including single- and multi-chain approaches. However, selecting and tuning sampling algorithms suited for a given problem remains challenging and a comprehensive comparison of different methods is so far not available.

RESULTS

We present the results of a thorough benchmarking of state-of-the-art single- and multi-chain sampling methods, including Adaptive Metropolis, Delayed Rejection Adaptive Metropolis, Metropolis adjusted Langevin algorithm, Parallel Tempering and Parallel Hierarchical Sampling. Different initialization and adaptation schemes are considered. To ensure a comprehensive and fair comparison, we consider problems with a range of features such as bifurcations, periodical orbits, multistability of steady-state solutions and chaotic regimes. These problem properties give rise to various posterior distributions including uni- and multi-modal distributions and non-normally distributed mode tails. For an objective comparison, we developed a pipeline for the semi-automatic comparison of sampling results.

CONCLUSION

The comparison of MCMC algorithms, initialization and adaptation schemes revealed that overall multi-chain algorithms perform better than single-chain algorithms. In some cases this performance can be further increased by using a preceding multi-start local optimization scheme. These results can inform the selection of sampling methods and the benchmark collection can serve for the evaluation of new algorithms. Furthermore, our results confirm the need to address exploration quality of MCMC chains before applying the commonly used quality measure of effective sample size to prevent false analysis conclusions.

摘要

背景

在定量生物学中,数学模型用于描述和分析生物过程。这些模型的参数通常是未知的,需要使用统计方法从实验数据中进行估计。特别是,马尔可夫链蒙特卡罗(MCMC)方法越来越受欢迎,因为它们允许对参数和预测不确定性进行严格分析,而无需假设参数可识别性或去除不可识别的参数。已经提出了广泛的MCMC算法,包括单链和多链方法。然而,选择和调整适合给定问题的采样算法仍然具有挑战性,并且目前还没有对不同方法进行全面比较。

结果

我们展示了对最先进的单链和多链采样方法进行全面基准测试的结果,包括自适应 metropolis 算法、延迟拒绝自适应 metropolis 算法、metropolis 调整朗之万算法、并行回火和并行分层采样。考虑了不同的初始化和自适应方案。为了确保全面和公平的比较,我们考虑了一系列具有不同特征的问题,如分岔、周期轨道、稳态解的多稳定性和混沌区域。这些问题特性导致了各种后验分布,包括单峰和多峰分布以及非正态分布的模式尾部。为了进行客观比较,我们开发了一个用于采样结果半自动比较的管道。

结论

MCMC算法、初始化和自适应方案的比较表明,总体而言,多链算法比单链算法表现更好。在某些情况下,通过使用先前的多起点局部优化方案可以进一步提高这种性能。这些结果可以为采样方法的选择提供参考,并且基准测试集可以用于评估新算法。此外,我们的结果证实了在应用常用的有效样本量质量度量之前,需要解决MCMC链的探索质量问题,以防止得出错误的分析结论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50c5/5482939/68480a4189df/12918_2017_433_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验