Lim Jae Hyung, Jung Gyoo Yeol
Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea.
School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea.
Biotechnol Biofuels. 2017 Jun 21;10:160. doi: 10.1186/s13068-017-0847-4. eCollection 2017.
A microbial cell factory with high yield and productivity are prerequisites for an economically feasible bio-based chemical industry. However, cell factories that show a kinetic imbalance between glycolysis and product formation pathways are not optimal. Glycolysis activity is highly robust for survival in nature, but is not optimized for chemical production.
Here, we propose a novel approach to balance glycolytic activity with the product formation capacity by precisely controlling expression level of (encoded glucose transporter) through UTR engineering. For various heterologous pathways with different maximum production rates, e.g., -butanol, butyrate, and 2,3-butanediol, glycolytic fluxes could be successfully modulated to maximize yield and productivity, while minimizing by-product formation in .
These results support the application of this simple method to explore the maximum yield and productivity when designing optimal cell factories for value-added products in the fields of metabolic engineering and synthetic biology.
具有高产量和高生产率的微生物细胞工厂是经济可行的生物基化学工业的先决条件。然而,在糖酵解和产物形成途径之间表现出动力学失衡的细胞工厂并非最佳选择。糖酵解活性在自然界中对生存具有高度稳健性,但未针对化学生产进行优化。
在此,我们提出了一种新方法,通过UTR工程精确控制(编码葡萄糖转运蛋白)的表达水平,使糖酵解活性与产物形成能力相平衡。对于具有不同最大生产速率的各种异源途径,例如丁醇、丁酸盐和2,3 - 丁二醇,糖酵解通量能够成功调节,以实现产量和生产率的最大化,同时在中使副产物形成最小化。
这些结果支持在代谢工程和合成生物学领域为增值产品设计最佳细胞工厂时,应用这种简单方法来探索最大产量和生产率。