Suppr超能文献

基于极限学习的自适应稀疏表示的肌电假肢控制的肢体位置容差模式识别

Limb Position Tolerant Pattern Recognition for Myoelectric Prosthesis Control with Adaptive Sparse Representations From Extreme Learning.

出版信息

IEEE Trans Biomed Eng. 2018 Apr;65(4):770-778. doi: 10.1109/TBME.2017.2719400. Epub 2017 Jun 23.

Abstract

UNLABELLED

Myoelectric signals can be used to predict the intended movements of an amputee for prosthesis control. However, untrained effects like limb position changes influence myoelectric signal characteristics, hindering the ability of pattern recognition algorithms to discriminate among motion classes. Despite frequent and long training sessions, these deleterious conditional influences may result in poor performance and device abandonment.

GOAL

We present a robust sparsity-based adaptive classification method that is significantly less sensitive to signal deviations resulting from untrained conditions.

METHODS

We compare this approach in the offline and online contexts of untrained upper-limb positions for amputee and able-bodied subjects to demonstrate its robustness compared against other myoelectric classification methods.

RESULTS

We report significant performance improvements () in untrained limb positions across all subject groups.

SIGNIFICANCE

The robustness of our suggested approach helps to ensure better untrained condition performance from fewer training conditions.

CONCLUSIONS

This method of prosthesis control has the potential to deliver real-world clinical benefits to amputees: better condition-tolerant performance, reduced training burden in terms of frequency and duration, and increased adoption of myoelectric prostheses.

摘要

目的

我们提出了一种基于稀疏的自适应分类方法,该方法对未经训练的条件导致的信号偏差的敏感性显著降低。

方法

我们将该方法在未经训练的上肢位置的离线和在线情况下进行比较,以证明其与其他肌电分类方法相比具有更强的鲁棒性。

结果

我们报告了所有受试者组在未经训练的肢体位置上的性能显著提高()。

意义

我们提出的方法的鲁棒性有助于确保从更少的训练条件中获得更好的未经训练条件的性能。

结论

这种假体控制方法有可能为截肢者带来实际的临床益处:更好的条件耐受性能、减少训练的频率和时长负担,以及增加对肌电假体的采用。

相似文献

9
Closed-Loop Multi-Amplitude Control for Robust and Dexterous Performance of Myoelectric Prosthesis.闭环多幅度控制提高肌电假肢的鲁棒性和灵活性。
IEEE Trans Neural Syst Rehabil Eng. 2020 Feb;28(2):498-507. doi: 10.1109/TNSRE.2019.2959714. Epub 2019 Dec 13.

引用本文的文献

8
Targeted Transcutaneous Electrical Nerve Stimulation for Phantom Limb Sensory Feedback.用于幻肢感觉反馈的靶向经皮电神经刺激
IEEE Biomed Circuits Syst Conf. 2017 Oct;2017. doi: 10.1109/biocas.2017.8325200. Epub 2018 Mar 29.
9
Neuromorphic vision and tactile fusion for upper limb prosthesis control.用于上肢假肢控制的神经形态视觉与触觉融合
Int IEEE EMBS Conf Neural Eng. 2019 Mar;2019:981-984. doi: 10.1109/ner.2019.8716890. Epub 2019 May 20.

本文引用的文献

4
Cascaded Adaptation Framework for Fast Calibration of Myoelectric Control.用于肌电控制快速校准的级联自适应框架
IEEE Trans Neural Syst Rehabil Eng. 2017 Mar;25(3):254-264. doi: 10.1109/TNSRE.2016.2562180. Epub 2016 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验