Suppr超能文献

基于稀疏表示的用于假肢控制的肌电信号肢体位置稳健分类

Limb-position robust classification of myoelectric signals for prosthesis control using sparse representations.

作者信息

Betthauser Joseph L, Hunt Christopher L, Osborn Luke E, Kaliki Rahul R, Thakor Nitish V

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:6373-6376. doi: 10.1109/EMBC.2016.7592186.

Abstract

The fundamental objective in non-invasive myoelectric prosthesis control is to determine the user's intended movements from corresponding skin-surface recorded electromyographic (sEMG) activation signals as quickly and accurately as possible. Linear Discriminant Analysis (LDA) has emerged as the de facto standard for real-time movement classification due to its ease of use, calculation speed, and remarkable classification accuracy under controlled training conditions. However, performance of cluster-based methods like LDA for sEMG pattern recognition degrades significantly when real-world testing conditions do not resemble the trained conditions, limiting the utility of myoelectrically controlled prosthesis devices. We propose an enhanced classification method that is more robust to generic deviations from training conditions by constructing sparse representations of the input data dictionary comprised of sEMG time-frequency features. We apply our method in the context of upper-limb position changes to demonstrate pattern recognition robustness and improvement over LDA across discrete positions not explicitly trained. For single position training we report an accuracy improvement in untrained positions of 7.95%, p ≪ .001, in addition to significant accuracy improvements across all multiposition training conditions, p <; .001.

摘要

非侵入式肌电假肢控制的基本目标是尽可能快速、准确地从相应的皮肤表面记录的肌电图(sEMG)激活信号中确定用户的预期动作。线性判别分析(LDA)因其易用性、计算速度以及在受控训练条件下显著的分类准确率,已成为实时动作分类的事实上的标准。然而,当实际测试条件与训练条件不同时,像LDA这样基于聚类的方法在sEMG模式识别中的性能会显著下降,这限制了肌电控制假肢设备的实用性。我们提出一种增强的分类方法,通过构建由sEMG时频特征组成的输入数据字典的稀疏表示,使其对与训练条件的一般偏差更具鲁棒性。我们将我们的方法应用于上肢位置变化的情境中,以证明模式识别的鲁棒性以及在未明确训练的离散位置上相对于LDA的改进。对于单位置训练,我们报告在未训练位置的准确率提高了7.95%(p≪.001),此外在所有多位置训练条件下准确率也有显著提高(p<.001)。

相似文献

8
Classification of Multiple Finger Motions During Dynamic Upper Limb Movements.动态上肢运动中多指运动的分类
IEEE J Biomed Health Inform. 2017 Jan;21(1):134-141. doi: 10.1109/JBHI.2015.2490718. Epub 2015 Oct 14.

本文引用的文献

5
Classification of simultaneous movements using surface EMG pattern recognition.基于表面肌电信号模式识别的同步运动分类。
IEEE Trans Biomed Eng. 2013 May;60(5):1250-8. doi: 10.1109/TBME.2012.2232293. Epub 2012 Dec 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验