Suppr超能文献

基于混合漂移t分布的基于模型的尖峰排序

Model-based spike sorting with a mixture of drifting t-distributions.

作者信息

Shan Kevin Q, Lubenov Evgueniy V, Siapas Athanassios G

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States; Division of Engineering and Applied Science, California Institute of Technology, Pasadena, United States.

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States; Division of Engineering and Applied Science, California Institute of Technology, Pasadena, United States.

出版信息

J Neurosci Methods. 2017 Aug 15;288:82-98. doi: 10.1016/j.jneumeth.2017.06.017. Epub 2017 Jun 23.

Abstract

BACKGROUND

Chronic extracellular recordings are a powerful tool for systems neuroscience, but spike sorting remains a challenge. A common approach is to fit a generative model, such as a mixture of Gaussians, to the observed spike data. Even if non-parametric methods are used for spike sorting, such generative models provide a quantitative measure of unit isolation quality, which is crucial for subsequent interpretation of the sorted spike trains.

NEW METHOD

We present a spike sorting strategy that models the data as a mixture of drifting t-distributions. This model captures two important features of chronic extracellular recordings-cluster drift over time and heavy tails in the distribution of spikes-and offers improved robustness to outliers.

RESULTS

We evaluate this model on several thousand hours of chronic tetrode recordings and show that it fits the empirical data substantially better than a mixture of Gaussians. We also provide a software implementation that can re-fit long datasets in a few seconds, enabling interactive clustering of chronic recordings.

COMPARISON WITH EXISTING METHODS

We identify three common failure modes of spike sorting methods that assume stationarity and evaluate their impact given the empirically-observed cluster drift in chronic recordings. Using hybrid ground truth datasets, we also demonstrate that our model-based estimate of misclassification error is more accurate than previous unit isolation metrics.

CONCLUSIONS

The mixture of drifting t-distributions model enables efficient spike sorting of long datasets and provides an accurate measure of unit isolation quality over a wide range of conditions.

摘要

背景

慢性细胞外记录是系统神经科学的一种强大工具,但尖峰分类仍然是一个挑战。一种常见的方法是将生成模型,如高斯混合模型,拟合到观察到的尖峰数据上。即使使用非参数方法进行尖峰分类,这种生成模型也能提供单位分离质量的定量测量,这对于后续对分类后的尖峰序列的解释至关重要。

新方法

我们提出了一种尖峰分类策略,将数据建模为漂移t分布的混合。该模型捕捉了慢性细胞外记录的两个重要特征——随着时间的推移聚类漂移以及尖峰分布中的重尾——并对异常值具有更高的鲁棒性。

结果

我们在数千小时的慢性四极管记录上评估了该模型,结果表明它比高斯混合模型能更好地拟合经验数据。我们还提供了一个软件实现,它可以在几秒钟内重新拟合长数据集,实现慢性记录的交互式聚类。

与现有方法的比较

我们确定了假设平稳性的尖峰分类方法的三种常见失败模式,并评估了它们在慢性记录中根据经验观察到的聚类漂移所产生的影响。使用混合的真实数据集,我们还证明了基于我们模型的误分类误差估计比以前的单位分离指标更准确。

结论

漂移t分布混合模型能够对长数据集进行高效的尖峰分类,并在广泛的条件下提供单位分离质量的准确测量。

相似文献

1
Model-based spike sorting with a mixture of drifting t-distributions.基于混合漂移t分布的基于模型的尖峰排序
J Neurosci Methods. 2017 Aug 15;288:82-98. doi: 10.1016/j.jneumeth.2017.06.017. Epub 2017 Jun 23.
4
Consensus-Based Sorting of Neuronal Spike Waveforms.基于共识的神经元尖峰波形分类
PLoS One. 2016 Aug 18;11(8):e0160494. doi: 10.1371/journal.pone.0160494. eCollection 2016.
8
Cluster tendency assessment in neuronal spike data.神经元尖峰数据中的聚类趋势评估。
PLoS One. 2019 Nov 12;14(11):e0224547. doi: 10.1371/journal.pone.0224547. eCollection 2019.
9
Accurate spike sorting for multi-unit recordings.多单元记录的精确尖峰分类。
Eur J Neurosci. 2010 Jan;31(2):263-72. doi: 10.1111/j.1460-9568.2009.07068.x. Epub 2010 Jan 13.
10

引用本文的文献

9
Continuing progress of spike sorting in the era of big data.大数据时代的尖峰电位分类学持续进展。
Curr Opin Neurobiol. 2019 Apr;55:90-96. doi: 10.1016/j.conb.2019.02.007. Epub 2019 Mar 8.

本文引用的文献

4
Consensus-Based Sorting of Neuronal Spike Waveforms.基于共识的神经元尖峰波形分类
PLoS One. 2016 Aug 18;11(8):e0160494. doi: 10.1371/journal.pone.0160494. eCollection 2016.
5
Spike sorting for large, dense electrode arrays.用于大型密集电极阵列的尖峰分类
Nat Neurosci. 2016 Apr;19(4):634-641. doi: 10.1038/nn.4268. Epub 2016 Mar 14.
6
7
High-dimensional cluster analysis with the masked EM algorithm.使用掩码期望最大化算法的高维聚类分析。
Neural Comput. 2014 Nov;26(11):2379-94. doi: 10.1162/NECO_a_00661. Epub 2014 Aug 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验