Department of Electrical Engineering (ESAT), Stadius Center for Dynamical Systems, Signal Processing, and Data Analytics, KU Leuven, Leuven, Belgium.
Neuro-Electronics Research Flanders (NERF), Leuven, Belgium.
Neuroinformatics. 2021 Jan;19(1):141-158. doi: 10.1007/s12021-020-09474-8.
Spike sorting is the process of retrieving the spike times of individual neurons that are present in an extracellular neural recording. Over the last decades, many spike sorting algorithms have been published. In an effort to guide a user towards a specific spike sorting algorithm, given a specific recording setting (i.e., brain region and recording device), we provide an open-source graphical tool for the generation of hybrid ground-truth data in Python. Hybrid ground-truth data is a data-driven modelling paradigm in which spikes from a single unit are moved to a different location on the recording probe, thereby generating a virtual unit of which the spike times are known. The tool enables a user to efficiently generate hybrid ground-truth datasets and make informed decisions between spike sorting algorithms, fine-tune the algorithm parameters towards the used recording setting, or get a deeper understanding of those algorithms.
尖峰分类是指从细胞外神经记录中提取存在的单个神经元尖峰时间的过程。在过去的几十年中,已经发表了许多尖峰分类算法。为了指导用户选择特定的尖峰分类算法,给定特定的记录设置(即大脑区域和记录设备),我们提供了一个用于在 Python 中生成混合真实数据的开源图形工具。混合真实数据是一种数据驱动的建模范例,其中单个单元的尖峰被移动到记录探针上的不同位置,从而生成虚拟单元,其尖峰时间是已知的。该工具使用户能够高效地生成混合真实数据集,并在尖峰分类算法之间做出明智的决策,针对使用的记录设置调整算法参数,或深入了解这些算法。