Suppr超能文献

建立 IONP 定量与回声和无回声 MR 弛豫映射的重叠。

Establishing the overlap of IONP quantification with echo and echoless MR relaxation mapping.

机构信息

Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA.

Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA.

出版信息

Magn Reson Med. 2018 Mar;79(3):1420-1428. doi: 10.1002/mrm.26800. Epub 2017 Jun 26.

Abstract

PURPOSE

Iron-oxide nanoparticles (IONPs) have shown tremendous utility for enhancing image contrast and delivering targeted therapies. Quantification of IONPs has been demonstrated at low concentrations with gradient echo (GRE) and spin echo (SE), and at high concentrations with echoless sequences such as swept imaging with Fourier transform (SWIFT). This work examines the overlap of IONP quantification with GRE, SE, and SWIFT.

METHODS

The limit of quantification of GRE, SE, inversion-recovery GRE, and SWIFT sequences was assessed using IONPs at a concentration range of 0.02 to 89.29 mM suspended in 1% agarose. Empirically derived limits of quantification were compared with International Union of Pure and Applied Chemistry definitions. Both commercial and experimental IONPs were used.

RESULTS

All three IONPs assessed demonstrated an overlap of concentration quantification with GRE, SE, and SWIFT sequences. The largest dynamic range observed was 0.004 to 35.7 mM with Feraheme.

CONCLUSIONS

The metrics established allow upper and lower quantitative limitations to be estimated given the relaxivity characteristics of the IONP and the concentration range of the material to be assessed. The methods outlined in this paper are applicable to any pulse sequence, IONP formulation, and field strength. Magn Reson Med 79:1420-1428, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

摘要

目的

氧化铁纳米颗粒(IONP)在增强图像对比度和提供靶向治疗方面显示出巨大的应用潜力。已经证明,在低浓度下可以使用梯度回波(GRE)和自旋回波(SE)对 IONP 进行定量,而在高浓度下可以使用无回波序列(如傅里叶变换的扫频成像(SWIFT))进行定量。本研究探讨了 GRE、SE 和 SWIFT 与 IONP 定量的重叠。

方法

使用浓度范围为 0.02 至 89.29 mM 的悬浮在 1%琼脂糖中的 IONP 评估 GRE、SE、反转恢复 GRE 和 SWIFT 序列的定量下限。经验推导的定量下限与国际纯粹与应用化学联合会的定义进行了比较。使用了商业和实验性的 IONP。

结果

评估的三种 IONP 均显示与 GRE、SE 和 SWIFT 序列的浓度定量有重叠。使用 Feraheme 观察到的最大动态范围为 0.004 至 35.7 mM。

结论

给定 IONP 的弛豫率特征和待评估材料的浓度范围,可以估计出定量的上下限。本文中概述的方法适用于任何脉冲序列、IONP 配方和磁场强度。磁共振医学 79:1420-1428, 2018。© 2017 国际磁共振学会。

相似文献

1
Establishing the overlap of IONP quantification with echo and echoless MR relaxation mapping.
Magn Reson Med. 2018 Mar;79(3):1420-1428. doi: 10.1002/mrm.26800. Epub 2017 Jun 26.
4
Imaging and quantification of iron-oxide nanoparticles (IONP) using MP-RAGE and UTE based sequences.
Magn Reson Med. 2017 Jul;78(1):226-232. doi: 10.1002/mrm.26371. Epub 2016 Aug 6.
6
Imaging the distribution of iron oxide nanoparticles in hypothermic perfused tissues.
Magn Reson Med. 2020 May;83(5):1750-1759. doi: 10.1002/mrm.28123. Epub 2019 Dec 9.
8
Positive contrast from cells labeled with iron oxide nanoparticles: Quantitation of imaging data.
Magn Reson Med. 2017 Nov;78(5):1900-1910. doi: 10.1002/mrm.26585. Epub 2017 Jan 17.
9
T₁ estimation for aqueous iron oxide nanoparticle suspensions using a variable flip angle SWIFT sequence.
Magn Reson Med. 2013 Aug;70(2):341-7. doi: 10.1002/mrm.24831. Epub 2013 Jun 28.
10
Ultra-short echo time images quantify high liver iron.
Magn Reson Med. 2018 Mar;79(3):1579-1585. doi: 10.1002/mrm.26791. Epub 2017 Jun 22.

引用本文的文献

1
Current Challenges in Image-Guided Magnetic Hyperthermia Therapy for Liver Cancer.
Nanomaterials (Basel). 2022 Aug 12;12(16):2768. doi: 10.3390/nano12162768.
2
Vitrification and Rewarming of Magnetic Nanoparticle-Loaded Rat Hearts.
Adv Mater Technol. 2022 Mar;7(3). doi: 10.1002/admt.202100873. Epub 2021 Oct 1.
3
Clinical magnetic hyperthermia requires integrated magnetic particle imaging.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 May;14(3):e1779. doi: 10.1002/wnan.1779. Epub 2022 Mar 3.
4
Preparation of Scalable Silica-Coated Iron Oxide Nanoparticles for Nanowarming.
Adv Sci (Weinh). 2020 Jan 7;7(4):1901624. doi: 10.1002/advs.201901624. eCollection 2020 Feb.
5
Imaging the distribution of iron oxide nanoparticles in hypothermic perfused tissues.
Magn Reson Med. 2020 May;83(5):1750-1759. doi: 10.1002/mrm.28123. Epub 2019 Dec 9.
6
Tracking Neural Progenitor Cell Migration in the Rodent Brain Using Magnetic Resonance Imaging.
Front Neurosci. 2019 Jan 11;12:995. doi: 10.3389/fnins.2018.00995. eCollection 2018.

本文引用的文献

1
Recent progress in magnetic particle imaging: from hardware to preclinical applications.
Phys Med Biol. 2017 May 7;62(9):E4-E7. doi: 10.1088/1361-6560/aa62c7. Epub 2017 Apr 5.
2
Improved tissue cryopreservation using inductive heating of magnetic nanoparticles.
Sci Transl Med. 2017 Mar 1;9(379). doi: 10.1126/scitranslmed.aah4586.
3
Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform.
Phys Med Biol. 2017 May 7;62(9):3483-3500. doi: 10.1088/1361-6560/aa5601. Epub 2016 Dec 29.
5
Overview of quantitative susceptibility mapping.
NMR Biomed. 2017 Apr;30(4). doi: 10.1002/nbm.3569. Epub 2016 Jul 19.
6
Predictable Heating and Positive MRI Contrast from a Mesoporous Silica-Coated Iron Oxide Nanoparticle.
Mol Pharm. 2016 Jul 5;13(7):2172-83. doi: 10.1021/acs.molpharmaceut.5b00866. Epub 2016 Apr 4.
7
Gradient-Modulated PETRA MRI.
Tomography. 2015 Dec;1(2):85-90. doi: 10.18383/j.tom.2015.00157.
8
Quantitative assessment of microvasculopathy in arcAβ mice with USPIO-enhanced gradient echo MRI.
J Cereb Blood Flow Metab. 2016 Sep;36(9):1614-24. doi: 10.1177/0271678X15621500. Epub 2015 Dec 1.
9
A Review of Clinical Translation of Inorganic Nanoparticles.
AAPS J. 2015 Sep;17(5):1041-54. doi: 10.1208/s12248-015-9780-2. Epub 2015 May 9.
10
Wireless magnetothermal deep brain stimulation.
Science. 2015 Mar 27;347(6229):1477-80. doi: 10.1126/science.1261821. Epub 2015 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验