文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

低温灌注组织中铁氧化物纳米颗粒的分布成像。

Imaging the distribution of iron oxide nanoparticles in hypothermic perfused tissues.

机构信息

Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota.

Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota.

出版信息

Magn Reson Med. 2020 May;83(5):1750-1759. doi: 10.1002/mrm.28123. Epub 2019 Dec 9.


DOI:10.1002/mrm.28123
PMID:31815324
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6982566/
Abstract

PURPOSE: Herein, we evaluate the use of MRI as a tool for assessing iron oxide nanoparticle (IONP) distribution within IONP perfused organs and vascularized composite allografts (VCAs) (i.e., hindlimbs) prepared for cryopreservation. METHODS: Magnetic resonance imaging was performed on room-temperature organs and VCAs perfused with IONPs and were assessed at 9.4 T. Quantitative T mapping and -weighted images were acquired using sweep imaging with Fourier transformation and gradient-echo sequences, respectively. Verification of IONP localization was performed through histological assessment and microcomputer tomography. RESULTS: Quantitative imaging was achieved for organs and VCAs perfused with up to 642 mM (36 mg /mL), which is above previous demonstrations of upper limit detection in agarose (35.7mM [2 mg /mL]). The stability of IONPs in the perfusate had an effect on the quality of distribution and imaging within organs or VCA. Finally, MRI provided more accurate IONP localization than Prussian blue histological staining in this system, wherein IONPs remain primarily in the vasculature. CONCLUSION: Using MRI, we were able to assess the distribution of IONPs throughout organs and VCAs varying in complexity. Additional studies are necessary to better understand this system and validate the calibration between T measurements and IONP concentration.

摘要

目的:在此,我们评估了 MRI 在评估铁氧化物纳米颗粒(IONP)在灌注 IONP 的器官和血管化复合移植物(即后肢)内分布中的作用,这些器官和移植物是为冷冻保存而准备的。

方法:在室温下对灌注了 IONP 的器官和 VCA 进行了磁共振成像,并在 9.4 T 下进行了评估。使用扫频成像傅里叶变换和梯度回波序列分别获得定量 T 映射和 T2 加权图像。通过组织学评估和微计算机断层扫描对 IONP 定位进行了验证。

结果:对灌注了高达 642 mM(36 mg/mL)的器官和 VCA 进行了定量成像,这高于在琼脂糖(35.7 mM [2 mg/mL])中以前的上限检测演示。在灌注液中的 IONP 的稳定性对器官或 VCA 内的分布和成像质量有影响。最后,与普鲁士蓝组织学染色相比,MRI 提供了更准确的 IONP 定位,在该系统中 IONP 主要仍存在于脉管系统中。

结论:我们使用 MRI 能够评估复杂程度不同的器官和 VCA 中 IONP 的分布。需要进一步的研究来更好地理解这个系统,并验证 T 测量值与 IONP 浓度之间的校准。

相似文献

[1]
Imaging the distribution of iron oxide nanoparticles in hypothermic perfused tissues.

Magn Reson Med. 2020-5

[2]
Quantifying iron-oxide nanoparticles at high concentration based on longitudinal relaxation using a three-dimensional SWIFT Look-Locker sequence.

Magn Reson Med. 2014-6

[3]
Establishing the overlap of IONP quantification with echo and echoless MR relaxation mapping.

Magn Reson Med. 2017-6-26

[4]
Toward absolute quantification of iron oxide nanoparticles as well as cell internalized fraction using multiparametric MRI.

Contrast Media Mol Imaging. 2012

[5]
Prussian Blue Staining to Visualize Iron Oxide Nanoparticles.

Methods Mol Biol. 2023

[6]
Imaging and quantification of iron-oxide nanoparticles (IONP) using MP-RAGE and UTE based sequences.

Magn Reson Med. 2017-7

[7]
In Vivo Imaging and Quantification of Iron Oxide Nanoparticle Uptake and Biodistribution.

Proc SPIE Int Soc Opt Eng. 2012-3-23

[8]
T₁-weighted ultrashort echo time method for positive contrast imaging of magnetic nanoparticles and cancer cells bound with the targeted nanoparticles.

J Magn Reson Imaging. 2011-1

[9]
Quantification and biodistribution of iron oxide nanoparticles in the primary clearance organs of mice using T contrast for heating.

Magn Reson Med. 2016-9-25

[10]
Chemical transformation and cytotoxicity of iron oxide nanoparticles (IONPs) accumulated in mitochondria.

Talanta. 2023-1-1

引用本文的文献

[1]
Vitrification and Rewarming of Magnetic Nanoparticle-Loaded Rat Hearts.

Adv Mater Technol. 2022-3

[2]
Cryopreservation by Directional Freezing and Vitrification Focusing on Large Tissues and Organs.

Cells. 2022-3-22

[3]
Histochemistry for nanomedicine: Novelty in tradition.

Eur J Histochem. 2021-12-27

[4]
Vitrification and Nanowarming of Kidneys.

Adv Sci (Weinh). 2021-10

[5]
Perfusion, cryopreservation, and nanowarming of whole hearts using colloidally stable magnetic cryopreservation agent solutions.

Sci Adv. 2021-1-8

本文引用的文献

[1]
Ex vivo diffusion MRI of the human brain: Technical challenges and recent advances.

NMR Biomed. 2018-6-4

[2]
Establishing the overlap of IONP quantification with echo and echoless MR relaxation mapping.

Magn Reson Med. 2017-6-26

[3]
The promise of organ and tissue preservation to transform medicine.

Nat Biotechnol. 2017-6-7

[4]
Comparison of and MRI for the Detection of Structural Abnormalities in a Mouse Model of Tauopathy.

Front Neuroinform. 2017-3-31

[5]
Improved tissue cryopreservation using inductive heating of magnetic nanoparticles.

Sci Transl Med. 2017-3-1

[6]
Enhanced Histochemical Detection of Iron in Paraffin Sections of Mouse Central Nervous System Tissue: Application in the APP/PS1 Mouse Model of Alzheimer's Disease.

ASN Neuro. 2016-9-28

[7]
Quantification and biodistribution of iron oxide nanoparticles in the primary clearance organs of mice using T contrast for heating.

Magn Reson Med. 2016-9-25

[8]
Predictable Heating and Positive MRI Contrast from a Mesoporous Silica-Coated Iron Oxide Nanoparticle.

Mol Pharm. 2016-7-5

[9]
The Grand Challenges of Organ Banking: Proceedings from the first global summit on complex tissue cryopreservation.

Cryobiology. 2016-4

[10]
Multi-Band-SWIFT.

J Magn Reson. 2015-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索