Knudsen T B, Klieforth B, Slikker W
1 National Center for Computational Toxicology/EPA, Research Triangle Park, NC 27711, USA.
2 National Center for Environmental Research/EPA, Washington, DC 20460, USA.
Exp Biol Med (Maywood). 2017 Oct;242(16):1586-1592. doi: 10.1177/1535370217717697. Epub 2017 Jun 28.
Microphysiological systems (MPS) and computer simulation models that recapitulate the underlying biology and toxicology of critical developmental transitions are emerging tools for developmental effects assessment of drugs/chemicals. Opportunities and challenges exist for their application to alternative, more public health relevant and efficient chemical toxicity testing methods. This is especially pertinent to children's health research and the evaluation of complex embryological and reproductive impacts of drug/chemical exposure. Scaling these technologies to higher throughput is a key challenge and drives the need for in silico models for quantitative prediction of developmental toxicity to inform safety assessments. One example is cellular agent-based models, constructed from extant embryology, that produce data useful to simulate critical developmental transitions and thereby predict phenotypic consequences of disruption in silico. Biologically inspired MPS models built from human induced pluripotent stem (iPS)-derived cells and synthetic matrices that recapitulate organ-specific physiologies and native tissue architectures are providing exciting new research opportunities to advance the assessment of developmental toxicity and offer the possibility of deriving a full 'human on a chip' system, or a 'Homunculus.' Impact statement This 'commentary' summarizes research needs and opportunities for engineered MPS models for developmental and reproductive toxicity testing. Emerging concepts can be taken forward to a virtual tissue modeling framework for assessing chemical (and non-chemical) stressors on human development. These models will advance children's health research, both basic and translational and new ways to evaluate complex embryological and reproductive impacts of drug and chemical exposures to inform safety assessments.
微生理系统(MPS)和计算机模拟模型能够概括关键发育转变的潜在生物学和毒理学特征,它们正成为评估药物/化学品发育效应的新兴工具。将其应用于替代性的、更具公共卫生相关性且高效的化学毒性测试方法,既存在机遇,也面临挑战。这对于儿童健康研究以及评估药物/化学品暴露对复杂胚胎学和生殖的影响尤为重要。将这些技术扩展至更高通量是一项关键挑战,这推动了对用于发育毒性定量预测的计算机模型的需求,以便为安全性评估提供信息。一个例子是基于细胞的模型,它由现有的胚胎学构建而成,能够生成有助于模拟关键发育转变的数据,从而在计算机上预测破坏的表型后果。由人类诱导多能干细胞(iPS)衍生的细胞和合成基质构建的、能够概括器官特异性生理学和天然组织结构的受生物启发的MPS模型,为推进发育毒性评估提供了令人兴奋的新研究机会,并提供了构建完整“芯片上的人”系统或“小人儿”的可能性。影响声明 本“评论”总结了用于发育和生殖毒性测试的工程化MPS模型的研究需求和机遇。新兴概念可被引入一个虚拟组织建模框架,以评估化学(和非化学)应激源对人类发育的影响。这些模型将推动儿童健康研究,包括基础研究和转化研究,并为评估药物和化学品暴露对复杂胚胎学和生殖的影响提供新方法,以便为安全性评估提供信息。