Suppr超能文献

具有不同拓扑结构的兴奋性神经元网络的突触损伤和鲁棒性。

Synaptic Impairment and Robustness of Excitatory Neuronal Networks with Different Topologies.

机构信息

Department of Mechanical Engineering, University of MichiganAnn Arbor, MI, United States.

Division of Geriatrics, Department of Internal Medicine, Medical School, University of MichiganAnn Arbor, MI, United States.

出版信息

Front Neural Circuits. 2017 Jun 13;11:38. doi: 10.3389/fncir.2017.00038. eCollection 2017.

Abstract

Synaptic deficiencies are a known hallmark of neurodegenerative diseases, but the diagnosis of impaired synapses on the cellular level is not an easy task. Nonetheless, changes in the system-level dynamics of neuronal networks with damaged synapses can be detected using techniques that do not require high spatial resolution. This paper investigates how the structure/topology of neuronal networks influences their dynamics when they suffer from synaptic loss. We study different neuronal network structures/topologies by specifying their degree distributions. The modes of the degree distribution can be used to construct networks that consist of rich clubs and resemble small world networks, as well. We define two dynamical metrics to compare the activity of networks with different structures: persistent activity (namely, the self-sustained activity of the network upon removal of the initial stimulus) and quality of activity (namely, percentage of neurons that participate in the persistent activity of the network). Our results show that synaptic loss affects the persistent activity of networks with bimodal degree distributions less than it affects random networks. The robustness of neuronal networks enhances when the distance between the modes of the degree distribution increases, suggesting that the rich clubs of networks with distinct modes keep the whole network active. In addition, a tradeoff is observed between the quality of activity and the persistent activity. For a range of distributions, both of these dynamical metrics are considerably high for networks with bimodal degree distribution compared to random networks. We also propose three different scenarios of synaptic impairment, which may correspond to different pathological or biological conditions. Regardless of the network structure/topology, results demonstrate that synaptic loss has more severe effects on the activity of the network when impairments are correlated with the activity of the neurons.

摘要

突触缺失是神经退行性疾病的已知标志,但在细胞水平上诊断突触损伤并非易事。尽管如此,使用不需要高空间分辨率的技术仍然可以检测到受损突触的神经元网络系统水平动力学的变化。本文研究了神经元网络的结构/拓扑结构在遭受突触损失时如何影响其动力学。我们通过指定它们的度分布来研究不同的神经元网络结构/拓扑结构。度分布的模式可用于构建由丰富俱乐部组成且类似于小世界网络的网络。我们定义了两个动态指标来比较具有不同结构的网络的活动:持续活动(即在去除初始刺激后网络的自维持活动)和活动质量(即参与网络持续活动的神经元的百分比)。我们的结果表明,与随机网络相比,突触缺失对具有双峰度分布的网络的持续活动的影响较小。当度分布的模式之间的距离增加时,神经元网络的鲁棒性增强,这表明具有不同模式的网络的丰富俱乐部保持整个网络的活跃。此外,在活动质量和持续活动之间观察到一种权衡。对于一系列分布,与随机网络相比,具有双峰度分布的网络的这两个动态指标都相当高。我们还提出了三种不同的突触损伤情况,这些情况可能对应于不同的病理或生物学条件。无论网络结构/拓扑结构如何,结果表明,当损伤与神经元的活动相关时,突触缺失对网络活动的影响更为严重。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb1/5468411/af36dbd99545/fncir-11-00038-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验