Suppr超能文献

从临床记录中自动预测冠状动脉疾病。

Automatic prediction of coronary artery disease from clinical narratives.

作者信息

Buchan Kevin, Filannino Michele, Uzuner Özlem

机构信息

Department of Information Science, State University of New York at Albany, NY, USA.

Department of Computer Science, State University of New York at Albany, NY, USA.

出版信息

J Biomed Inform. 2017 Aug;72:23-32. doi: 10.1016/j.jbi.2017.06.019. Epub 2017 Jun 27.

Abstract

Coronary Artery Disease (CAD) is not only the most common form of heart disease, but also the leading cause of death in both men and women (Coronary Artery Disease: MedlinePlus, 2015). We present a system that is able to automatically predict whether patients develop coronary artery disease based on their narrative medical histories, i.e., clinical free text. Although the free text in medical records has been used in several studies for identifying risk factors of coronary artery disease, to the best of our knowledge our work marks the first attempt at automatically predicting development of CAD. We tackle this task on a small corpus of diabetic patients. The size of this corpus makes it important to limit the number of features in order to avoid overfitting. We propose an ontology-guided approach to feature extraction, and compare it with two classic feature selection techniques. Our system achieves state-of-the-art performance of 77.4% F1 score.

摘要

冠状动脉疾病(CAD)不仅是最常见的心脏病形式,也是男性和女性死亡的主要原因(冠状动脉疾病:MedlinePlus,2015)。我们提出了一种系统,该系统能够根据患者的叙述性病史(即临床自由文本)自动预测患者是否会患上冠状动脉疾病。尽管病历中的自由文本已在多项研究中用于识别冠状动脉疾病的危险因素,但据我们所知,我们的工作是首次尝试自动预测CAD的发展情况。我们在一小批糖尿病患者语料库上处理这项任务。这个语料库的规模使得限制特征数量以避免过拟合变得很重要。我们提出了一种本体引导的特征提取方法,并将其与两种经典的特征选择技术进行比较。我们的系统实现了77.4%的F1分数这一领先水平的性能。

相似文献

1
Automatic prediction of coronary artery disease from clinical narratives.
J Biomed Inform. 2017 Aug;72:23-32. doi: 10.1016/j.jbi.2017.06.019. Epub 2017 Jun 27.
2
Challenges in clinical natural language processing for automated disorder normalization.
J Biomed Inform. 2015 Oct;57:28-37. doi: 10.1016/j.jbi.2015.07.010. Epub 2015 Jul 14.
3
Creation of a new longitudinal corpus of clinical narratives.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S6-S10. doi: 10.1016/j.jbi.2015.09.018. Epub 2015 Oct 1.
4
A hybrid model for automatic identification of risk factors for heart disease.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S171-S182. doi: 10.1016/j.jbi.2015.09.006. Epub 2015 Sep 12.
5
Coronary artery disease risk assessment from unstructured electronic health records using text mining.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S203-S210. doi: 10.1016/j.jbi.2015.08.003. Epub 2015 Aug 28.
6
Identifying risk factors for heart disease over time: Overview of 2014 i2b2/UTHealth shared task Track 2.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S67-S77. doi: 10.1016/j.jbi.2015.07.001. Epub 2015 Jul 22.
7
Annotating risk factors for heart disease in clinical narratives for diabetic patients.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S78-S91. doi: 10.1016/j.jbi.2015.05.009. Epub 2015 May 21.
8
The role of fine-grained annotations in supervised recognition of risk factors for heart disease from EHRs.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S111-S119. doi: 10.1016/j.jbi.2015.06.010. Epub 2015 Jun 26.
9
Comparison of UMLS terminologies to identify risk of heart disease using clinical notes.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S103-S110. doi: 10.1016/j.jbi.2015.08.025. Epub 2015 Sep 12.
10
An automatic system to identify heart disease risk factors in clinical texts over time.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S158-S163. doi: 10.1016/j.jbi.2015.09.002. Epub 2015 Sep 8.

引用本文的文献

2
Machine Learning-Based Prediction of First Trimester Down Syndrome Risk in East Asian Populations.
Risk Manag Healthc Policy. 2025 Mar 29;18:1109-1120. doi: 10.2147/RMHP.S511035. eCollection 2025.
3
Prospects for AI clinical summarization to reduce the burden of patient chart review.
Front Digit Health. 2024 Nov 7;6:1475092. doi: 10.3389/fdgth.2024.1475092. eCollection 2024.
4
Fusion Modeling: Combining Clinical and Imaging Data to Advance Cardiac Care.
Circ Cardiovasc Imaging. 2023 Dec;16(12):e014533. doi: 10.1161/CIRCIMAGING.122.014533. Epub 2023 Dec 11.
5
Tasks as needs: reframing the paradigm of clinical natural language processing research for real-world decision support.
J Am Med Inform Assoc. 2022 Sep 12;29(10):1810-1817. doi: 10.1093/jamia/ocac121.
6
Natural Language Processing: from Bedside to Everywhere.
Yearb Med Inform. 2022 Aug;31(1):243-253. doi: 10.1055/s-0042-1742510. Epub 2022 Jun 2.
7
Artificial Intelligence and Cardiovascular Genetics.
Life (Basel). 2022 Feb 14;12(2):279. doi: 10.3390/life12020279.
8
Multi-feature fusion framework for sarcasm identification on twitter data: A machine learning based approach.
PLoS One. 2021 Jun 10;16(6):e0252918. doi: 10.1371/journal.pone.0252918. eCollection 2021.
9
Multimodal temporal-clinical note network for mortality prediction.
J Biomed Semantics. 2021 Feb 15;12(1):3. doi: 10.1186/s13326-021-00235-3.

本文引用的文献

1
Developing EHR-driven heart failure risk prediction models using CPXR(Log) with the probabilistic loss function.
J Biomed Inform. 2016 Apr;60:260-9. doi: 10.1016/j.jbi.2016.01.009. Epub 2016 Feb 1.
2
Practical applications for natural language processing in clinical research: The 2014 i2b2/UTHealth shared tasks.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S1-S5. doi: 10.1016/j.jbi.2015.10.007. Epub 2015 Oct 24.
3
Creation of a new longitudinal corpus of clinical narratives.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S6-S10. doi: 10.1016/j.jbi.2015.09.018. Epub 2015 Oct 1.
4
A context-aware approach for progression tracking of medical concepts in electronic medical records.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S150-S157. doi: 10.1016/j.jbi.2015.09.013. Epub 2015 Sep 30.
5
Hidden Markov model using Dirichlet process for de-identification.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S60-S66. doi: 10.1016/j.jbi.2015.09.004. Epub 2015 Sep 25.
6
Comparison of machine learning classifiers for influenza detection from emergency department free-text reports.
J Biomed Inform. 2015 Dec;58:60-69. doi: 10.1016/j.jbi.2015.08.019. Epub 2015 Sep 16.
7
Textual inference for eligibility criteria resolution in clinical trials.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S211-S218. doi: 10.1016/j.jbi.2015.09.008. Epub 2015 Sep 14.
8
Comparison of UMLS terminologies to identify risk of heart disease using clinical notes.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S103-S110. doi: 10.1016/j.jbi.2015.08.025. Epub 2015 Sep 12.
9
A hybrid model for automatic identification of risk factors for heart disease.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S171-S182. doi: 10.1016/j.jbi.2015.09.006. Epub 2015 Sep 12.
10
An automatic system to identify heart disease risk factors in clinical texts over time.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S158-S163. doi: 10.1016/j.jbi.2015.09.002. Epub 2015 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验