Brosey Chris A, Ahmed Zamal, Lees-Miller Susan P, Tainer John A
The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States.
Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada.
Methods Enzymol. 2017;592:417-455. doi: 10.1016/bs.mie.2017.04.005. Epub 2017 May 29.
DNA damage outcomes depend upon the efficiency and fidelity of DNA damage responses (DDRs) for different cells and damage. As such, DDRs represent tightly regulated prototypical systems for linking nanoscale biomolecular structure and assembly to the biology of genomic regulation and cell signaling. However, the dynamic and multifunctional nature of DDR assemblies can render elusive the correlation between the structures of DDR factors and specific biological disruptions to the DDR when these structures are altered. In this chapter, we discuss concepts and strategies for combining structural, biophysical, and imaging techniques to investigate DDR recognition and regulation, and thus bridge sequence-level structural biochemistry to quantitative biological outcomes visualized in cells. We focus on representative DDR responses from PARP/PARG/AIF damage signaling in DNA single-strand break repair and nonhomologous end joining complexes in double-strand break repair. Methods with exemplary experimental results are considered with a focus on strategies for probing flexibility, conformational changes, and assembly processes that shape a predictive understanding of DDR mechanisms in a cellular context. Integration of structural and imaging measurements promises to provide foundational knowledge to rationally control and optimize DNA damage outcomes for synthetic lethality and for immune activation with resulting insights for biology and cancer interventions.
DNA损伤的结果取决于不同细胞和损伤情况下DNA损伤反应(DDRs)的效率和保真度。因此,DDRs代表了将纳米级生物分子结构与组装与基因组调控生物学和细胞信号传导联系起来的严格调控的典型系统。然而,当DDR组件的结构发生改变时,DDR组件的动态和多功能性质可能使DDR因子的结构与DDR的特定生物破坏之间的相关性变得难以捉摸。在本章中,我们讨论了结合结构、生物物理和成像技术来研究DDR识别和调控的概念和策略,从而将序列水平的结构生物化学与细胞中可视化的定量生物学结果联系起来。我们重点关注DNA单链断裂修复中PARP/PARG/AIF损伤信号传导以及双链断裂修复中非同源末端连接复合物的代表性DDR反应。考虑了具有示例性实验结果的方法,重点是探测灵活性、构象变化和组装过程的策略,这些策略有助于在细胞环境中形成对DDR机制的预测性理解。结构和成像测量的整合有望提供基础知识,以便合理控制和优化DNA损伤结果,实现合成致死性和免疫激活,并为生物学和癌症干预提供相关见解。