Suppr超能文献

原子力显微镜探索微生物的细胞生物学和抗菌药物的药理学。

Cell biology of microbes and pharmacology of antimicrobial drugs explored by Atomic Force Microscopy.

机构信息

LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France; CNRS, UMR 7565, SRSMC, F-54506 Vandœuvre-lès-Nancy, France; Université de Lorraine, UMR 7565, SRSMC, Faculté de Pharmacie, F-54001 Nancy, France.

CNRS, UMR 7565, SRSMC, F-54506 Vandœuvre-lès-Nancy, France; Université de Lorraine, UMR 7565, SRSMC, Faculté de Pharmacie, F-54001 Nancy, France; ABC Platform(®), F-54001 Nancy, France.

出版信息

Semin Cell Dev Biol. 2018 Jan;73:165-176. doi: 10.1016/j.semcdb.2017.06.022. Epub 2017 Jun 28.

Abstract

Antimicrobial molecules have been used for more than 50 years now and are the basis of modern medicine. No surgery can nowdays be imagined to be performed without antibiotics; dreadful diseases like tuberculosis, leprosis, siphilys, and more broadly all microbial induced diseases, can be cured only through the use of antimicrobial treatments. However, the situation is becoming more and more complex because of the ability of microbes to adapt, develop, acquire, and share mechanisms of resistance to antimicrobial agents. We choose to introduce this review by briefly drawing the panorama of antimicrobial discovery and development, but also of the emergence of microbial resistance. Then we describe how Atomic Force Microscopy (AFM) can be used to provide a better understanding of the mechanisms of action of these drugs at the nanoscale level on microbial interfaces. In this section, we will address these questions: (1) how does drug treatment affect the morphology of single microbes?; (2) do antimicrobial molecules modify the nanomechanical properties of microbes, or do the nanomechanical properties of microbes play a role in antimicrobial activity and efficiency?; and (3) how are the adhesive abilitites of microbes affected by antimicrobial drugs treatment? Finally, in a second part of this review we focus on recent studies aimed at changing the paradigm of the single molecule/cell technology that AFM typically represents. Recent work dealing with the creation of a microbe array which can be explored by AFM will be presented, as these developments constitute the first steps toward transforming AFM into a higher throughput technology. We also discuss papers using AFM as NanoMechnanicalSensors (NEMS), and demonstrate the interest of such approaches in clinical microbiology to detect quickly and with high accuracy microbial resistance.

摘要

抗菌分子已经使用了 50 多年,是现代医学的基础。如今,没有抗生素就无法想象进行任何手术;只有通过使用抗菌治疗,才能治愈结核病、麻风病、梅毒等可怕的疾病,以及更广泛的所有由微生物引起的疾病。然而,由于微生物具有适应、发展、获得和共享对抗生素药物的耐药机制的能力,情况变得越来越复杂。我们选择通过简要描述抗菌药物的发现和发展以及微生物耐药性的出现来介绍这篇综述。然后,我们描述了原子力显微镜(AFM)如何用于在纳米尺度上更好地了解这些药物在微生物界面上的作用机制。在这一节中,我们将解决这些问题:(1)药物治疗如何影响单个微生物的形态?;(2)抗菌分子是否改变了微生物的纳米力学性质,或者微生物的纳米力学性质是否在抗菌活性和效率中起作用?;(3)抗菌药物治疗如何影响微生物的粘附能力?最后,在这篇综述的第二部分,我们将重点介绍最近旨在改变 AFM 通常代表的单分子/细胞技术范式的研究。将介绍处理创建微生物阵列的最新工作,这些阵列可以通过 AFM 进行探索,因为这些发展是将 AFM 转变为高通量技术的第一步。我们还讨论了使用 AFM 作为纳米力学传感器(NEMS)的论文,并证明了这些方法在临床微生物学中快速、准确地检测微生物耐药性的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验