López-Tarifa P, Liguori Nicoletta, van den Heuvel Naudin, Croce Roberta, Visscher Lucas
Amsterdam Center for Multiscale Modeling, Dep. Theoretical Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
Phys Chem Chem Phys. 2017 Jul 19;19(28):18311-18320. doi: 10.1039/c7cp03284f.
The light harvesting complex II (LHCII), is a pigment-protein complex responsible for most of the light harvesting in plants. LHCII harvests sunlight and transfers excitation energy to the reaction centre of the photo-system, where the water oxidation process takes place. The energetics of LHCII can be modulated by means of conformational changes allowing a switch from a harvesting to a quenched state. In this state, the excitation energy is no longer transferred but converted into thermal energy to prevent photooxidation. Based on molecular dynamics simulations at the microsecond time scale, we have recently proposed that the switch between different fluorescent states can be probed by correlating shifts in the chromophore-chromophore Coulomb interactions to particular protein movements. However, these findings are based upon calculations in the ideal point dipole approximation (IDA) where the Coulomb couplings are simplified as first order dipole-dipole interactions, also assuming that the chromophore transition dipole moments lay in particular directions of space with constant moduli (FIX-IDA). In this work, we challenge this approximation using the time-dependent density functional theory (TDDFT) combined with the frozen density embedding (FDE) approach. Our aim is to establish up to which limit FIX-IDA can be applied and which chromophore types are better described under this approximation. For that purpose, we use the classical trajectories of solubilised light harvesting complex II (LHCII) we have recently reported [Liguori et al., Sci. Rep., 2015, 5, 15661] and selected three pairs of chromophores containing chlorophyll and carotenoids (Chl and Car): Chla611-Chla612, Chlb606-Chlb607 and Chla612-Lut620. Using the FDE in the Tamm-Dancoff approximation (FDEc-TDA), we show that IDA is accurate enough for predicting Chl-Chl Coulomb couplings. However, the FIX-IDA largely overestimates Chl-Car interactions mainly because the transition dipole for the Cars is not trivially oriented on the polyene chain.
捕光复合物II(LHCII)是一种色素-蛋白质复合物,负责植物中的大部分光捕获。LHCII捕获太阳光并将激发能转移到光系统的反应中心,水氧化过程在此发生。LHCII的能量学可以通过构象变化进行调节,从而实现从捕获状态到猝灭状态的转换。在这种状态下,激发能不再转移而是转化为热能以防止光氧化。基于微秒时间尺度的分子动力学模拟,我们最近提出,可以通过将发色团-发色团库仑相互作用的变化与特定的蛋白质运动相关联,来探测不同荧光状态之间的转换。然而,这些发现是基于理想点偶极近似(IDA)中的计算,其中库仑耦合被简化为一阶偶极-偶极相互作用,并且还假设发色团跃迁偶极矩以恒定模量位于特定的空间方向(FIX-IDA)。在这项工作中,我们使用含时密度泛函理论(TDDFT)结合冻结密度嵌入(FDE)方法对这种近似提出质疑。我们的目的是确定FIX-IDA可以应用的极限,以及在这种近似下哪种发色团类型能得到更好的描述。为此,我们使用了我们最近报道的[Liguori等人,《科学报告》,2015年,5,15661]溶解态捕光复合物II(LHCII)的经典轨迹,并选择了三对包含叶绿素和类胡萝卜素(Chl和Car)的发色团:Chla611-Chla612、Chlb606-Chlb607和Chla612-Lut620。使用Tamm-Dancoff近似下的FDE(FDEc-TDA),我们表明IDA对于预测Chl-Chl库仑耦合足够准确。然而,FIX-IDA在很大程度上高估了Chl-Car相互作用,主要是因为类胡萝卜素的跃迁偶极在多烯链上的取向并非简单易定。