Ionides E L, Breto C, Park J, Smith R A, King A A
Department of Statistics, The University of Michigan, Ann Arbor, MI, USA
Department of Statistics, The University of Michigan, Ann Arbor, MI, USA.
J R Soc Interface. 2017 Jul;14(132). doi: 10.1098/rsif.2017.0126.
Monte Carlo methods to evaluate and maximize the likelihood function enable the construction of confidence intervals and hypothesis tests, facilitating scientific investigation using models for which the likelihood function is intractable. When Monte Carlo error can be made small, by sufficiently exhaustive computation, then the standard theory and practice of likelihood-based inference applies. As datasets become larger, and models more complex, situations arise where no reasonable amount of computation can render Monte Carlo error negligible. We develop profile likelihood methodology to provide frequentist inferences that take into account Monte Carlo uncertainty. We investigate the role of this methodology in facilitating inference for computationally challenging dynamic latent variable models. We present examples arising in the study of infectious disease transmission, demonstrating our methodology for inference on nonlinear dynamic models using genetic sequence data and panel time-series data. We also discuss applicability to nonlinear time-series and spatio-temporal data.
用于评估和最大化似然函数的蒙特卡罗方法能够构建置信区间和假设检验,从而便于使用似然函数难以处理的模型进行科学研究。当通过足够详尽的计算使蒙特卡罗误差很小时,基于似然性的推断的标准理论和实践即可应用。随着数据集变得更大且模型更加复杂,会出现这样的情况,即无论进行多少合理的计算都无法使蒙特卡罗误差忽略不计。我们开发了轮廓似然方法,以提供考虑蒙特卡罗不确定性的频率推断。我们研究了该方法在促进对计算具有挑战性的动态潜变量模型进行推断方面的作用。我们给出了传染病传播研究中出现的例子,展示了我们使用基因序列数据和面板时间序列数据对非线性动态模型进行推断的方法。我们还讨论了其对非线性时间序列和时空数据的适用性。