Suppr超能文献

芯片,一种用于高通量下游应用的单微生物和多微生物生物膜的芯片实验室平台。

Chip, a Lab-on-a-Chip Platform of Mono- and Polymicrobial Biofilms for High-Throughput Downstream Applications.

作者信息

Srinivasan Anand, Torres Nelson S, Leung Kai P, Lopez-Ribot Jose L, Ramasubramanian Anand K

机构信息

Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas, USA.

BioBridge Global, San Antonio, Texas, USA.

出版信息

mSphere. 2017 Jun 28;2(3). doi: 10.1128/mSphere.00247-17. eCollection 2017 May-Jun.

Abstract

Current techniques for the culture of microorganisms, and particularly of delicate microbial biofilms, are still mostly limited to low-density plates and manual labor and are not amenable to automation and true high-throughput (HT) applications. We have developed a novel fully automated platform for the formation of mono- and polymicrobial biofilms of , , and at the nanoscale level. The Chip is robotically printed, robustly handled, and scanned using a standard microarray reader. Using this technique, hundreds to thousands of identical nanobiofilms encapsulated in hydrogel spots were cultured on microscope slides. The spots can withstand the washing steps involved in screening assays. The miniaturized biofilms demonstrated characteristics similar to those displayed by conventionally formed macroscopic biofilms, including (i) three-dimensional architectural features, (ii) synthesis of exopolymeric matrix material, and (iii) elevated resistance to antibiotic treatment. On the basis of our results, the Chip can generate reliable high-throughput antimicrobial susceptibility testing (HT-AST) in 12 to 18 h. The chip serves as a proof-of-concept universal platform for high-throughput drug screening and other downstream applications and furthers understanding of microbial interactions in mixed-species communities at the nanoscale level. With an estimated 80% of infections being associated with a biofilm mode of growth and the ensuing recalcitrance of these biofilms with respect to conventional antibiotic treatment leading to high mortality rates, there is a dire and unmet need for the development of novel approaches to prevent, treat, and control these infections. Both bacteria and fungi are capable of forming biofilms that are inherently fragile and often polymicrobial in nature, which further complicates treatment. In this work, we showcase a nanobiofilm chip as a convenient platform for culturing several hundreds of mono- or polymicrobial biofilms and for susceptibility testing. This platform enables true ultra-high-throughput screening for antimicrobial drug discovery or diagnostics or for addressing fundamental issues in microbiology.

摘要

当前用于微生物培养的技术,尤其是对于脆弱的微生物生物膜的培养技术,大多仍局限于低密度平板和人工操作,无法实现自动化和真正的高通量(HT)应用。我们开发了一种新型的全自动平台,用于在纳米尺度上形成金黄色葡萄球菌、大肠杆菌和白色念珠菌的单菌和多菌生物膜。该芯片通过机器人打印、坚固处理,并使用标准微阵列读取器进行扫描。利用这项技术,数百至数千个封装在水凝胶斑点中的相同纳米生物膜在显微镜载玻片上进行培养。这些斑点能够承受筛选试验中涉及的洗涤步骤。小型化生物膜展现出与传统形成的宏观生物膜相似的特征,包括:(i)三维结构特征;(ii)胞外聚合物基质材料的合成;(iii)对抗生素治疗的抗性增强。基于我们的结果,该芯片能够在12至18小时内进行可靠的高通量抗菌药敏试验(HT-AST)。该芯片作为一个概念验证的通用平台,可用于高通量药物筛选和其他下游应用,并有助于在纳米尺度上进一步理解混合物种群落中的微生物相互作用。据估计,80%的感染与生物膜生长模式相关,并且这些生物膜对传统抗生素治疗具有顽固性,导致高死亡率,因此迫切需要开发新的方法来预防、治疗和控制这些感染。细菌和真菌都能够形成本质上脆弱且通常为多菌的生物膜,这进一步使治疗复杂化。在这项工作中,我们展示了一种纳米生物膜芯片,它是用于培养数百个单菌或多菌生物膜以及进行药敏试验的便捷平台。这个平台能够实现真正的超高通量筛选,用于抗菌药物发现或诊断,或解决微生物学中的基本问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13af/5489659/3586ac7c8800/sph0041723130001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验