Suppr超能文献

三维打印微观细菌群落。

3D printing of microscopic bacterial communities.

机构信息

Departments of Chemistry and Biochemistry and Molecular Genetics and Microbiology, and Institute of Cell and Molecular Biology, The University of Texas at Austin, Austin, TX 78712.

出版信息

Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18380-5. doi: 10.1073/pnas.1309729110. Epub 2013 Oct 7.

Abstract

Bacteria communicate via short-range physical and chemical signals, interactions known to mediate quorum sensing, sporulation, and other adaptive phenotypes. Although most in vitro studies examine bacterial properties averaged over large populations, the levels of key molecular determinants of bacterial fitness and pathogenicity (e.g., oxygen, quorum-sensing signals) may vary over micrometer scales within small, dense cellular aggregates believed to play key roles in disease transmission. A detailed understanding of how cell-cell interactions contribute to pathogenicity in natural, complex environments will require a new level of control in constructing more relevant cellular models for assessing bacterial phenotypes. Here, we describe a microscopic three-dimensional (3D) printing strategy that enables multiple populations of bacteria to be organized within essentially any 3D geometry, including adjacent, nested, and free-floating colonies. In this laser-based lithographic technique, microscopic containers are formed around selected bacteria suspended in gelatin via focal cross-linking of polypeptide molecules. After excess reagent is removed, trapped bacteria are localized within sealed cavities formed by the cross-linked gelatin, a highly porous material that supports rapid growth of fully enclosed cellular populations and readily transmits numerous biologically active species, including polypeptides, antibiotics, and quorum-sensing signals. Using this approach, we show that a picoliter-volume aggregate of Staphylococcus aureus can display substantial resistance to β-lactam antibiotics by enclosure within a shell composed of Pseudomonas aeruginosa.

摘要

细菌通过短距离物理和化学信号进行通讯,这些信号交互作用被称为群体感应、孢子形成和其他适应性表型。尽管大多数体外研究都考察了在大群体中平均的细菌特性,但关键分子决定因素的水平(例如,氧气、群体感应信号)在小而密集的细胞聚集体内可能会在微米尺度上发生变化,这些细胞聚集体被认为在疾病传播中起着关键作用。要详细了解细胞间相互作用如何在自然、复杂的环境中导致致病性,就需要在构建更相关的细胞模型以评估细菌表型方面实现新的控制水平。在这里,我们描述了一种微观的三维(3D)打印策略,该策略能够将多个细菌群体组织在几乎任何 3D 几何形状中,包括相邻、嵌套和自由漂浮的菌落。在这种基于激光的光刻技术中,通过聚焦交联多肽分子,在含有悬浮细菌的明胶周围形成微小容器。除去多余的试剂后,被困的细菌会被定位在交联明胶形成的密封腔室内,交联明胶是一种高度多孔的材料,能够支持完全封闭的细胞群体的快速生长,并能轻易传递多种具有生物活性的物质,包括多肽、抗生素和群体感应信号。使用这种方法,我们表明,在由绿脓假单胞菌组成的壳内封闭的金黄色葡萄球菌微升体积聚集体可以表现出对β-内酰胺类抗生素的显著抗性。

相似文献

1
3D printing of microscopic bacterial communities.三维打印微观细菌群落。
Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18380-5. doi: 10.1073/pnas.1309729110. Epub 2013 Oct 7.
3
Oxygen limitation within a bacterial aggregate.细菌聚集体内的氧气限制。
mBio. 2014 Apr 15;5(2):e00992. doi: 10.1128/mBio.00992-14.
7
and Interactions between and spp.以及[具体物种1]和[具体物种2]之间的相互作用
Front Cell Infect Microbiol. 2017 Apr 3;7:106. doi: 10.3389/fcimb.2017.00106. eCollection 2017.

引用本文的文献

7
Microbial community interactions on a chip.芯片上的微生物群落相互作用。
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2403510121. doi: 10.1073/pnas.2403510121. Epub 2024 Sep 17.
8
10
Towards improved biofilm models.迈向改进的生物膜模型。
Nat Rev Microbiol. 2025 Jan;23(1):57-66. doi: 10.1038/s41579-024-01086-2. Epub 2024 Aug 7.

本文引用的文献

4
5
Multi-focal multiphoton lithography.多焦点多光子光刻技术。
Lab Chip. 2012 Mar 7;12(5):867-71. doi: 10.1039/c2lc21271d. Epub 2012 Jan 26.
6
Sociomicrobiology in engineered landscapes.工程景观中的社会微生物学。
Nat Chem Biol. 2011 Dec 15;8(1):10-3. doi: 10.1038/nchembio.749.
7
Droplet microfluidics for fabrication of non-spherical particles.用于制造非球形颗粒的液滴微流控技术。
Macromol Rapid Commun. 2010 Jan 18;31(2):108-18. doi: 10.1002/marc.200900590. Epub 2009 Nov 24.
9

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验