Suppr超能文献

N6-甲基腺苷 RNA 修饰在多能性和重编程中的作用。

The N-Methyladenosine RNA modification in pluripotency and reprogramming.

机构信息

Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, SE-901 85 Umeå, Sweden; Department of Medical Biosciences, Umeå University, SE-901 85 Umeå, Sweden; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mount Sinai Center for RNA Biology and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

出版信息

Curr Opin Genet Dev. 2017 Oct;46:77-82. doi: 10.1016/j.gde.2017.06.006. Epub 2017 Jul 3.

Abstract

Chemical modifications of RNA provide a direct and rapid way to manipulate the existing transcriptome, allowing rapid responses to the changing environment further enriching the regulatory capacity of RNA. N-Methyladenosine (mA) has been identified as the most abundant internal modification of messenger RNA in eukaryotes, linking external stimuli to an intricate network of transcriptional, post-transcriptional and translational processes. MA modification affects a broad spectrum of cellular functions, including maintenance of the pluripotency of embryonic stem cells (ESCs) and the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). In this review, we summarize the most recent findings on mA modification with special focus on the different studies describing how mA is implicated in ESC self-renewal, cell fate specification and iPSC generation.

摘要

RNA 的化学修饰为操纵现有转录组提供了一种直接而快速的方法,使细胞能够快速响应不断变化的环境,从而进一步丰富了 RNA 的调控能力。N6-甲基腺苷(m6A)已被鉴定为真核生物中信使 RNA 最丰富的内部修饰,它将外部刺激与转录、转录后和翻译过程的复杂网络联系起来。mA 修饰影响广泛的细胞功能,包括维持胚胎干细胞(ESC)的多能性和体细胞重编程为诱导多能干细胞(iPSC)。在这篇综述中,我们总结了 mA 修饰的最新发现,特别关注了不同研究描述 mA 如何参与 ESC 自我更新、细胞命运特化和 iPSC 生成的研究。

相似文献

1
The N-Methyladenosine RNA modification in pluripotency and reprogramming.
Curr Opin Genet Dev. 2017 Oct;46:77-82. doi: 10.1016/j.gde.2017.06.006. Epub 2017 Jul 3.
2
Steering pluripotency and differentiation with N-methyladenosine RNA modification.
Biochim Biophys Acta Gene Regul Mech. 2019 Mar;1862(3):394-402. doi: 10.1016/j.bbagrm.2018.10.013. Epub 2018 Nov 6.
4
MicroRNAs and RNA binding protein regulators of microRNAs in the control of pluripotency and reprogramming.
Curr Opin Genet Dev. 2017 Oct;46:95-103. doi: 10.1016/j.gde.2017.07.001. Epub 2017 Jul 25.
5
O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network.
Cell Stem Cell. 2012 Jul 6;11(1):62-74. doi: 10.1016/j.stem.2012.03.001. Epub 2012 May 17.
6
Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a.
Nat Cell Biol. 2016 Nov;18(11):1127-1138. doi: 10.1038/ncb3424. Epub 2016 Oct 17.
7
A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network.
Cell Stem Cell. 2012 Dec 7;11(6):769-82. doi: 10.1016/j.stem.2012.11.008.
8
Small changes, big implications: The impact of mA RNA methylation on gene expression in pluripotency and development.
Biochim Biophys Acta Gene Regul Mech. 2019 Sep;1862(9):194402. doi: 10.1016/j.bbagrm.2019.07.003. Epub 2019 Jul 17.
9
mA RNA Modification Determines Cell Fate by Regulating mRNA Degradation.
Cell Reprogram. 2017 Aug;19(4):225-231. doi: 10.1089/cell.2016.0041. Epub 2017 Jul 6.

引用本文的文献

2
Nicotine-induced Genetic and Epigenetic Modifications in Primary Human Amniotic Fluid Stem Cells.
Curr Pharm Des. 2024;30(25):1995-2006. doi: 10.2174/0113816128305232240607084420.
3
NAT10-mediated N4-acetylcytidine mRNA modification regulates self-renewal in human embryonic stem cells.
Nucleic Acids Res. 2023 Sep 8;51(16):8514-8531. doi: 10.1093/nar/gkad628.
4
METTL3 modulates chromatin and transcription dynamics during cell fate transition.
Cell Mol Life Sci. 2022 Oct 20;79(11):559. doi: 10.1007/s00018-022-04590-x.
6
METTL3-Mediated mA RNA Methylation of ZBTB4 Interferes With Trophoblast Invasion and Maybe Involved in RSA.
Front Cell Dev Biol. 2022 Jun 14;10:894810. doi: 10.3389/fcell.2022.894810. eCollection 2022.
7
N-Methyladenosine RNA Modification: A Potential Regulator of Stem Cell Proliferation and Differentiation.
Front Cell Dev Biol. 2022 Apr 4;10:835205. doi: 10.3389/fcell.2022.835205. eCollection 2022.
8
Current Advances in N6-Methyladenosine Methylation Modification During Bladder Cancer.
Front Genet. 2022 Jan 11;12:825109. doi: 10.3389/fgene.2021.825109. eCollection 2021.
9
mA RNA Immunoprecipitation Followed by High-Throughput Sequencing to Map N-Methyladenosine.
Methods Mol Biol. 2022;2404:355-362. doi: 10.1007/978-1-0716-1851-6_19.
10
Epitranscriptomic signatures in stem cell differentiation to the neuronal lineage.
RNA Biol. 2021 Oct 15;18(sup1):51-60. doi: 10.1080/15476286.2021.1985348. Epub 2021 Sep 28.

本文引用的文献

1
FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N-Methyladenosine RNA Demethylase.
Cancer Cell. 2017 Jan 9;31(1):127-141. doi: 10.1016/j.ccell.2016.11.017. Epub 2016 Dec 22.
2
m(6)A RNA methylation promotes XIST-mediated transcriptional repression.
Nature. 2016 Sep 15;537(7620):369-373. doi: 10.1038/nature19342. Epub 2016 Sep 7.
3
ZNF217/ZFP217 Meets Chromatin and RNA.
Trends Biochem Sci. 2016 Dec;41(12):986-988. doi: 10.1016/j.tibs.2016.07.013. Epub 2016 Aug 9.
4
Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing.
Mol Cell. 2016 Feb 18;61(4):507-519. doi: 10.1016/j.molcel.2016.01.012. Epub 2016 Feb 11.
5
Dynamic stem cell states: naive to primed pluripotency in rodents and humans.
Nat Rev Mol Cell Biol. 2016 Mar;17(3):155-69. doi: 10.1038/nrm.2015.28. Epub 2016 Feb 10.
6
5' UTR m(6)A Promotes Cap-Independent Translation.
Cell. 2015 Nov 5;163(4):999-1010. doi: 10.1016/j.cell.2015.10.012. Epub 2015 Oct 22.
7
Coordination of m(6)A mRNA Methylation and Gene Transcription by ZFP217 Regulates Pluripotency and Reprogramming.
Cell Stem Cell. 2015 Dec 3;17(6):689-704. doi: 10.1016/j.stem.2015.09.005. Epub 2015 Oct 29.
8
RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data.
Nucleic Acids Res. 2016 Jan 4;44(D1):D259-65. doi: 10.1093/nar/gkv1036. Epub 2015 Oct 12.
9
Dynamic m(6)A mRNA methylation directs translational control of heat shock response.
Nature. 2015 Oct 22;526(7574):591-4. doi: 10.1038/nature15377. Epub 2015 Oct 12.
10
HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events.
Cell. 2015 Sep 10;162(6):1299-308. doi: 10.1016/j.cell.2015.08.011. Epub 2015 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验