Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA.
Department of Mechanical Engineering, Iowa State University, Ames, Iowa, 50011, USA.
Sci Rep. 2019 Jul 22;9(1):10595. doi: 10.1038/s41598-019-46978-z.
In this study, a novel method based on the transfer of graphene patterns from a rigid or flexible substrate onto a polymeric film surface via solvent casting was developed. The method involves the creation of predetermined graphene patterns on the substrate, casting a polymer solution, and directly transferring the graphene patterns from the substrate to the surface of the target polymer film via a peeling-off method. The feature sizes of the graphene patterns on the final film can vary from a few micrometers (as low as 5 µm) to few millimeters range. This process, applied at room temperature, eliminates the need for harsh post-processing techniques and enables creation of conductive graphene circuits (sheet resistance: ~0.2 kΩ/sq) with high stability (stable after 100 bending and 24 h washing cycles) on various polymeric flexible substrates. Moreover, this approach allows precise control of the substrate properties such as composition, biodegradability, 3D microstructure, pore size, porosity and mechanical properties using different film formation techniques. This approach can also be used to fabricate flexible biointerfaces to control stem cell behavior, such as differentiation and alignment. Overall, this promising approach provides a facile and low-cost method for the fabrication of flexible and stretchable electronic circuits.
在这项研究中,开发了一种基于溶剂浇铸法将石墨烯图案从刚性或柔性基底转移到聚合物薄膜表面的新方法。该方法涉及在基底上创建预定的石墨烯图案,浇铸聚合物溶液,并通过剥离方法将石墨烯图案直接从基底转移到目标聚合物薄膜的表面。最终薄膜上的石墨烯图案的特征尺寸可以从几微米(低至 5 μm)到几毫米范围。该过程在室温下应用,无需苛刻的后处理技术,并且可以在各种聚合物柔性基底上创建具有高稳定性的导电石墨烯电路(方阻:~0.2 kΩ/sq)(经过 100 次弯曲和 24 小时洗涤循环后仍然稳定)。此外,该方法可以使用不同的薄膜形成技术来精确控制基底的性质,例如组成、生物降解性、3D 微观结构、孔径、孔隙率和机械性能。该方法还可以用于制造灵活的生物界面来控制干细胞行为,例如分化和定向。总的来说,这种有前途的方法为制造灵活和可拉伸的电子电路提供了一种简单且低成本的方法。