Suppr超能文献

定义和表征2型糖尿病发病前的关键过渡状态。

Defining and characterizing the critical transition state prior to the type 2 diabetes disease.

作者信息

Jin Bo, Liu Rui, Hao Shiying, Li Zhen, Zhu Chunqing, Zhou Xin, Chen Pei, Fu Tianyun, Hu Zhongkai, Wu Qian, Liu Wei, Liu Daowei, Yu Yunxian, Zhang Yan, McElhinney Doff B, Li Yu-Ming, Culver Devore S, Alfreds Shaun T, Stearns Frank, Sylvester Karl G, Widen Eric, Ling Xuefeng B

机构信息

HBI Solutions Inc., Palo Alto, California, United States of America.

Stanford University, Stanford, California, United States of America.

出版信息

PLoS One. 2017 Jul 7;12(7):e0180937. doi: 10.1371/journal.pone.0180937. eCollection 2017.

Abstract

BACKGROUND

Type 2 diabetes mellitus (T2DM), with increased risk of serious long-term complications, currently represents 8.3% of the adult population. We hypothesized that a critical transition state prior to the new onset T2DM can be revealed through the longitudinal electronic medical record (EMR) analysis.

METHOD

We applied the transition-based network entropy methodology which previously identified a dynamic driver network (DDN) underlying the critical T2DM transition at the tissue molecular biological level. To profile pre-disease phenotypical changes that indicated a critical transition state, a cohort of 7,334 patients was assembled from the Maine State Health Information Exchange (HIE). These patients all had their first confirmative diagnosis of T2DM between January 1, 2013 and June 30, 2013. The cohort's EMRs from the 24 months preceding their date of first T2DM diagnosis were extracted.

RESULTS

Analysis of these patients' pre-disease clinical history identified a dynamic driver network (DDN) and an associated critical transition state six months prior to their first confirmative T2DM state.

CONCLUSIONS

This 6-month window before the disease state provides an early warning of the impending T2DM, warranting an opportunity to apply proactive interventions to prevent or delay the new onset of T2DM.

摘要

背景

2型糖尿病(T2DM)存在严重长期并发症风险增加的情况,目前占成年人口的8.3%。我们假设,通过纵向电子病历(EMR)分析可以揭示新发性T2DM之前的关键过渡状态。

方法

我们应用了基于过渡的网络熵方法,该方法先前在组织分子生物学水平上识别出了关键T2DM过渡背后的动态驱动网络(DDN)。为了描绘表明关键过渡状态的疾病前表型变化,从缅因州健康信息交换中心(HIE)收集了7334名患者组成队列。这些患者均在2013年1月1日至2013年6月30日期间首次确诊为T2DM。提取了该队列在首次T2DM诊断日期前24个月的EMR。

结果

对这些患者疾病前临床病史的分析确定了一个动态驱动网络(DDN)以及在首次确诊T2DM状态前六个月的相关关键过渡状态。

结论

疾病状态前的这个6个月窗口为即将发生的T2DM提供了早期预警,从而有机会采取积极干预措施来预防或延迟T2DM的新发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e29a/5501620/dd717150347d/pone.0180937.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验