Suppr超能文献

发现杂芳基砜作为一类新型生物相容性硫醇选择性试剂。

Discovery of Heteroaromatic Sulfones As a New Class of Biologically Compatible Thiol-Selective Reagents.

作者信息

Chen Xiaofei, Wu Hanzhi, Park Chung-Min, Poole Thomas H, Keceli Gizem, Devarie-Baez Nelmi O, Tsang Allen W, Lowther W Todd, Poole Leslie B, King S Bruce, Xian Ming, Furdui Cristina M

机构信息

Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina 27157, United States.

Department of Chemistry, Washington State University , Pullman, Washington 99164, United States.

出版信息

ACS Chem Biol. 2017 Aug 18;12(8):2201-2208. doi: 10.1021/acschembio.7b00444. Epub 2017 Jul 19.

Abstract

The selective reaction of chemical reagents with reduced protein thiols is critical to biological research. This reaction is utilized to prevent cross-linking of cysteine-containing peptides in common proteomics workflows and is applied widely in discovery and targeted redox investigations of the mechanisms underlying physiological and pathological processes. However, known and commonly used thiol blocking reagents like iodoacetamide, N-ethylmaleimide, and others were found to cross-react with oxidized protein sulfenic acids (-SOH) introducing significant errors in studies employing these reagents. We have investigated and are reporting here a new heteroaromatic alkylsulfone, 4-(5-methanesulfonyl-[1,2,3,4]tetrazol-1-yl)-phenol (MSTP), as a selective and highly reactive -SH blocking reagent compatible with biological applications.

摘要

化学试剂与还原型蛋白质硫醇的选择性反应对生物学研究至关重要。在常见的蛋白质组学工作流程中,该反应被用于防止含半胱氨酸的肽发生交联,并广泛应用于生理和病理过程潜在机制的发现和靶向氧化还原研究。然而,人们发现碘乙酰胺、N-乙基马来酰亚胺等已知且常用的硫醇封闭试剂会与氧化型蛋白质亚磺酸(-SOH)发生交叉反应,在使用这些试剂的研究中引入显著误差。我们已经研究并在此报告一种新型杂芳基烷基砜,4-(5-甲磺酰基-[1,2,3,4]四唑-1-基)-苯酚(MSTP),作为一种与生物学应用兼容的选择性且高反应性的-SH封闭试剂。

相似文献

1
Discovery of Heteroaromatic Sulfones As a New Class of Biologically Compatible Thiol-Selective Reagents.
ACS Chem Biol. 2017 Aug 18;12(8):2201-2208. doi: 10.1021/acschembio.7b00444. Epub 2017 Jul 19.
2
Tunable Heteroaromatic Sulfones Enhance in-Cell Cysteine Profiling.
J Am Chem Soc. 2020 Jan 29;142(4):1801-1810. doi: 10.1021/jacs.9b08831. Epub 2020 Jan 13.
5
Elemental labelling and mass spectrometry for the specific detection of sulfenic acid groups in model peptides: a proof of concept.
Anal Bioanal Chem. 2017 Mar;409(8):2015-2027. doi: 10.1007/s00216-016-0149-x. Epub 2017 Jan 17.
6
Characterization of Reactions between Water-Soluble Trialkylphosphines and Thiol Alkylating Reagents: Implications for Protein-Conjugation Reactions.
Bioconjug Chem. 2016 Oct 19;27(10):2400-2406. doi: 10.1021/acs.bioconjchem.6b00375. Epub 2016 Sep 26.
7
Protein determination using bicinchoninic acid in the presence of sulfhydryl reagents.
Anal Biochem. 1988 Apr;170(1):203-8. doi: 10.1016/0003-2697(88)90109-1.

引用本文的文献

1
Analytical Methods for Assessing Thiol Antioxidants in Biological Fluids: A Review.
Molecules. 2024 Sep 18;29(18):4433. doi: 10.3390/molecules29184433.
2
Exploring 2-Sulfonylpyrimidine Warheads as Acrylamide Surrogates for Targeted Covalent Inhibition: A BTK Story.
J Med Chem. 2024 Aug 22;67(16):13572-13593. doi: 10.1021/acs.jmedchem.3c01927. Epub 2024 Aug 9.
3
Electrochemical Visualization of Single-Molecule Thiol Substitution with Nanopore Measurement.
ACS Meas Sci Au. 2023 Nov 10;4(1):76-80. doi: 10.1021/acsmeasuresciau.3c00046. eCollection 2024 Feb 21.
4
Structure-Reactivity Studies of 2-Sulfonylpyrimidines Allow Selective Protein Arylation.
Bioconjug Chem. 2023 Sep 20;34(9):1679-1687. doi: 10.1021/acs.bioconjchem.3c00322. Epub 2023 Sep 1.
6
Fast Cysteine Bioconjugation Chemistry.
Chemistry. 2022 Nov 25;28(66):e202201843. doi: 10.1002/chem.202201843. Epub 2022 Sep 19.
7
Integrated Redox Proteomic Analysis Highlights New Mechanisms of Sensitivity to Silver Nanoparticles.
Mol Cell Proteomics. 2021;20:100073. doi: 10.1016/j.mcpro.2021.100073. Epub 2021 Mar 20.
8
A modular template for the design of thiol-triggered sensors and prodrugs.
Spectrochim Acta A Mol Biomol Spectrosc. 2021 Feb 15;247:119072. doi: 10.1016/j.saa.2020.119072. Epub 2020 Oct 13.
9
A quantitative thiol reactivity profiling platform to analyze redox and electrophile reactive cysteine proteomes.
Nat Protoc. 2020 Sep;15(9):2891-2919. doi: 10.1038/s41596-020-0352-2. Epub 2020 Jul 20.
10
Introduction to approaches and tools for the evaluation of protein cysteine oxidation.
Essays Biochem. 2020 Feb 17;64(1):1-17. doi: 10.1042/EBC20190050.

本文引用的文献

1
Reversible Fluorescent Probes for Biological Redox States.
Angew Chem Int Ed Engl. 2016 Jan 26;55(5):1602-13. doi: 10.1002/anie.201506353. Epub 2015 Dec 2.
2
The Expanding Landscape of the Thiol Redox Proteome.
Mol Cell Proteomics. 2016 Jan;15(1):1-11. doi: 10.1074/mcp.O115.056051. Epub 2015 Oct 30.
3
Advancing understanding of microbial bioenergy conversion processes by activity-based protein profiling.
Biotechnol Biofuels. 2015 Sep 25;8:156. doi: 10.1186/s13068-015-0343-7. eCollection 2015.
4
Biological chemistry and functionality of protein sulfenic acids and related thiol modifications.
Free Radic Res. 2016;50(2):172-94. doi: 10.3109/10715762.2015.1090571. Epub 2015 Nov 11.
5
Oxidative stress in Alzheimer disease and mild cognitive impairment: evidence from human data provided by redox proteomics.
Arch Toxicol. 2015 Oct;89(10):1669-80. doi: 10.1007/s00204-015-1556-z. Epub 2015 Jul 1.
6
Cysteines under ROS attack in plants: a proteomics view.
J Exp Bot. 2015 May;66(10):2935-44. doi: 10.1093/jxb/erv044. Epub 2015 Mar 5.
7
Detection of thiol-based redox switch processes in parasites - facts and future.
Biol Chem. 2015 May;396(5):445-63. doi: 10.1515/hsz-2014-0279.
8
A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation.
Nat Chem Biol. 2015 Feb;11(2):156-63. doi: 10.1038/nchembio.1720. Epub 2015 Jan 12.
9
Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling.
Nat Chem Biol. 2015 Jan;11(1):64-70. doi: 10.1038/nchembio.1695. Epub 2014 Nov 24.
10
Application of redox proteomics to skeletal muscle aging and exercise.
Biochem Soc Trans. 2014 Aug;42(4):965-70. doi: 10.1042/BST20140085.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验