Suppr超能文献

非人灵长类前额皮质的高通道计数单单元记录。

High channel count single-unit recordings from nonhuman primate frontal cortex.

机构信息

Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.

Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

J Neurosci Methods. 2017 Sep 1;289:39-47. doi: 10.1016/j.jneumeth.2017.07.001. Epub 2017 Jul 4.

Abstract

BACKGROUND

Single unit recording in behaving nonhuman primates is widely used to study the primate central nervous system. However, certain questions cannot be addressed without recording large numbers of neurons simultaneously. Multiple 96-electrode probes can be implanted at one time, but certain problems must be overcome to make this approach practical.

NEW METHOD

We describe a series of innovations and practical guidance for implanting and recording from 8 arrays of 96 electrodes (768 electrodes) in the frontal cortex of Macaca mulatta. The methods include an individualized 3D-printed connector mounting platform, sequencing of assembly and surgical steps to minimize surgery time, and interventions to protect electrical connections of the implant.

RESULTS

The methodology is robust and was successful in our hands on the first attempt. On average, we were able to isolate hundreds (535.7 and 806.9 in two animals) of high quality units in each session during one month of recording.

COMPARISON WITH EXISTING METHODS

To the best of our knowledge, this technique at least doubles the number of Blackrock arrays that have been successfully implanted in single animals. Although each technological component was pre-existing at the time we developed these methods, their amalgamation to solve the problem of high channel count recording is novel.

CONCLUSIONS

The implantation of large numbers of electrodes opens new research possibilities. Refinements could lead to even greater capacity.

摘要

背景

在行为灵长类动物中进行单细胞记录被广泛用于研究灵长类动物的中枢神经系统。然而,如果不同时记录大量神经元,某些问题就无法解决。多个 96 电极探针可以一次植入,但为了使这种方法实用,必须克服某些问题。

新方法

我们描述了一系列创新和实用的指导,用于在猕猴的额皮质中植入和记录 8 个 96 电极阵列(768 个电极)。该方法包括个性化的 3D 打印连接器安装平台、组装和手术步骤的排序,以尽量减少手术时间,以及干预措施以保护植入物的电气连接。

结果

该方法是可靠的,在我们的首次尝试中就取得了成功。平均而言,在一个月的记录过程中,我们能够在每个会话中隔离数百个(两只动物分别为 535.7 个和 806.9 个)高质量单元。

与现有方法的比较

据我们所知,这项技术至少将已经成功植入单个动物的 Blackrock 阵列数量增加了一倍。虽然在开发这些方法时,每个技术组件都已经存在,但它们的组合是解决高通道计数记录问题的新颖方法。

结论

大量电极的植入开辟了新的研究可能性。改进可能会导致更大的容量。

相似文献

1
High channel count single-unit recordings from nonhuman primate frontal cortex.
J Neurosci Methods. 2017 Sep 1;289:39-47. doi: 10.1016/j.jneumeth.2017.07.001. Epub 2017 Jul 4.
2
Implantable computer-controlled adaptive multielectrode positioning system.
J Neurophysiol. 2018 Apr 1;119(4):1471-1484. doi: 10.1152/jn.00504.2017. Epub 2017 Nov 29.
4
Localization of movable electrodes in a multi-electrode microdrive in nonhuman primates.
J Neurosci Methods. 2020 Jan 15;330:108505. doi: 10.1016/j.jneumeth.2019.108505. Epub 2019 Nov 8.
6
Semi-chronic laminar recordings in the brainstem of behaving marmoset monkeys.
J Neurosci Methods. 2019 Jan 1;311:186-192. doi: 10.1016/j.jneumeth.2018.10.026. Epub 2018 Oct 21.
8
Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates.
J Neurophysiol. 2007 Nov;98(5):3109-18. doi: 10.1152/jn.00569.2007. Epub 2007 Sep 12.
9
3D printed guide tube system for acute Neuropixels probe recordings in non-human primates.
J Neural Eng. 2023 May 11;20(3):036009. doi: 10.1088/1741-2552/acd0d7.
10
An electrocorticographic electrode array for simultaneous recording from medial, lateral, and intrasulcal surface of the cortex in macaque monkeys.
J Neurosci Methods. 2014 Aug 15;233:155-65. doi: 10.1016/j.jneumeth.2014.06.022. Epub 2014 Jun 24.

引用本文的文献

1
Neural Correlates of Category Learning in Monkey Inferior Temporal Cortex.
J Neurosci. 2024 Dec 4;44(49):e0312242024. doi: 10.1523/JNEUROSCI.0312-24.2024.
2
Nondifferentiable activity in the brain.
PNAS Nexus. 2024 Jul 1;3(7):pgae261. doi: 10.1093/pnasnexus/pgae261. eCollection 2024 Jul.
3
Neural correlates of category learning in monkey inferior temporal cortex.
bioRxiv. 2023 Dec 7:2023.12.05.568765. doi: 10.1101/2023.12.05.568765.
4
Attractor dynamics reflect decision confidence in macaque prefrontal cortex.
Nat Neurosci. 2023 Nov;26(11):1970-1980. doi: 10.1038/s41593-023-01445-x. Epub 2023 Oct 5.
5
Distinct Lateral Prefrontal Regions Are Organized in an Anterior-Posterior Functional Gradient.
J Neurosci. 2023 Sep 20;43(38):6564-6572. doi: 10.1523/JNEUROSCI.0007-23.2023. Epub 2023 Aug 22.
6
Trends and Treatment Approaches for Complications in Neuroscience Experiments with Monkey Species.
Comp Med. 2023 Jun 1;73(3):216-228. doi: 10.30802/AALAS-CM-22-000079. Epub 2023 May 19.
7
8
An Energy-Efficient and High-Data-Rate IR-UWB Transmitter for Intracortical Neural Sensing Interfaces.
IEEE J Solid-State Circuits. 2022 Dec;57(12):3656-3668. doi: 10.1109/JSSC.2022.3212672. Epub 2022 Oct 18.
9
Pruning recurrent neural networks replicates adolescent changes in working memory and reinforcement learning.
Proc Natl Acad Sci U S A. 2022 May 31;119(22):e2121331119. doi: 10.1073/pnas.2121331119. Epub 2022 May 27.

本文引用的文献

1
Amygdala and Ventral Striatum Make Distinct Contributions to Reinforcement Learning.
Neuron. 2016 Oct 19;92(2):505-517. doi: 10.1016/j.neuron.2016.09.025. Epub 2016 Oct 6.
2
The need for calcium imaging in nonhuman primates: New motor neuroscience and brain-machine interfaces.
Exp Neurol. 2017 Jan;287(Pt 4):437-451. doi: 10.1016/j.expneurol.2016.08.003. Epub 2016 Aug 7.
3
Wireless Recording in the Peripheral Nervous System with Ultrasonic Neural Dust.
Neuron. 2016 Aug 3;91(3):529-39. doi: 10.1016/j.neuron.2016.06.034.
4
Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
Med Biol Eng Comput. 2016 Jan;54(1):23-44. doi: 10.1007/s11517-015-1430-4. Epub 2016 Jan 11.
5
Coordinated Neuronal Activity Enhances Corticocortical Communication.
Neuron. 2015 Aug 19;87(4):827-39. doi: 10.1016/j.neuron.2015.07.026.
6
Scale-invariant neuronal avalanche dynamics and the cut-off in size distributions.
PLoS One. 2014 Jun 13;9(6):e99761. doi: 10.1371/journal.pone.0099761. eCollection 2014.
7
Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys.
Nat Methods. 2014 Jun;11(6):670-6. doi: 10.1038/nmeth.2936. Epub 2014 Apr 28.
8
Functional connectivity during surround suppression in macaque area V4.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3342-5. doi: 10.1109/IEMBS.2011.6090906.
9
10
Neuronal ensemble control of prosthetic devices by a human with tetraplegia.
Nature. 2006 Jul 13;442(7099):164-71. doi: 10.1038/nature04970.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验