Chen Honglin, Huang Xiaobin, Zhang Minmin, Damanik Febriyani, Baker Matthew B, Leferink Anne, Yuan Huipin, Truckenmüller Roman, van Blitterswijk Clemens, Moroni Lorenzo
Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, 6200 MD Maastricht, The Netherlands; MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500AE Enschede, The Netherlands.
MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500AE Enschede, The Netherlands.
Acta Biomater. 2017 Sep 1;59:82-93. doi: 10.1016/j.actbio.2017.07.003. Epub 2017 Jul 6.
Electrospun scaffolds provide a promising approach for tissue engineering as they mimic the physical properties of extracellular matrix. Previous studies have demonstrated that electrospun scaffolds with porous features on the surface of single fibers, enhanced cellular attachment and proliferation. Yet, little is known about the effect of such topographical cues on cellular differentiation. Here, we aimed at investigating the influence of surface roughness of electrospun scaffolds on skeletal differentiation of human mesenchymal stromal cells (hMSCs). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis showed that the surface nanoroughness of fibers was successfully regulated via humidity control of the electrospinning environment. Gene expression analysis revealed that a higher surface roughness (roughness average (Ra)=71.0±11.0nm) supported more induction of osteogenic genes such as osteopontin (OPN), bone morphogenetic protein 2 (BMP2), and runt-related transcription factor 2 (RUNX2), while a lower surface roughness (Ra=14.3±2.5nm) demonstrated higher expression of other osteogenic genes including bone sialoprotein (BSP), collagen type I (COL1A1) and osteocalcin (OCN). Interestingly, a lower surface roughness (Ra=14.3±2.5nm) better supported chondrogenic gene expression of hMSCs at day 7 compared to higher surface roughness (Ra=71.0±11.0nm). Taken together, modulating surface roughness of 3D scaffolds appears to be a significant factor in scaffold design for the control of skeletal differentiation of hMSCs.
Tissue engineering scaffolds having specific topographical cues offer exciting possibilities for stimulating cells differentiation and growth of new tissue. Although electrospun scaffolds have been extensively investigated in tissue engineering and regenerative medicine, little is known about the influence of introducing nanoroughness on their surface for cellular differentiation. The present study provides a method to engineer electrospun scaffolds with tailoring surface nanoroughness and investigates the effect of such topographical cues on the process of human mesenchymal stromal cells differentiation into osteoblasts and chondrocytes linages. This strategy may help the design of nanostructured scaffolds for skeletal tissue engineering.
电纺支架为组织工程提供了一种很有前景的方法,因为它们模仿细胞外基质的物理特性。先前的研究表明,单纤维表面具有多孔特征的电纺支架可增强细胞附着和增殖。然而,对于这种拓扑线索对细胞分化的影响知之甚少。在这里,我们旨在研究电纺支架的表面粗糙度对人间充质基质细胞(hMSCs)骨骼分化的影响。扫描电子显微镜(SEM)和原子力显微镜(AFM)分析表明,通过控制电纺环境的湿度成功调节了纤维的表面纳米粗糙度。基因表达分析显示,较高的表面粗糙度(平均粗糙度(Ra)=71.0±11.0nm)支持更多成骨基因的诱导,如骨桥蛋白(OPN)、骨形态发生蛋白2(BMP2)和 runt 相关转录因子2(RUNX2),而较低的表面粗糙度(Ra=14.3±2.5nm)则显示其他成骨基因的表达较高,包括骨唾液酸蛋白(BSP)、I型胶原(COL1A1)和骨钙素(OCN)。有趣的是,与较高表面粗糙度(Ra=71.0±11.0nm)相比,较低表面粗糙度(Ra=14.3±2.5nm)在第7天更好地支持了hMSCs的软骨生成基因表达。综上所述,调节3D支架的表面粗糙度似乎是控制hMSCs骨骼分化的支架设计中的一个重要因素。
具有特定拓扑线索的组织工程支架为刺激细胞分化和新组织生长提供了令人兴奋的可能性。尽管电纺支架已在组织工程和再生医学中得到广泛研究,但对于在其表面引入纳米粗糙度对细胞分化的影响知之甚少。本研究提供了一种设计具有定制表面纳米粗糙度的电纺支架的方法,并研究了这种拓扑线索对人间充质基质细胞分化为成骨细胞和软骨细胞谱系过程的影响。这种策略可能有助于设计用于骨骼组织工程的纳米结构支架。