Liu Lanfang, Yan Xin, Liu Jin, Xia Mingrui, Lu Chunming, Emmorey Karen, Chu Mingyuan, Ding Guosheng
State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China; IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China.
Department of Communicative Sciences and Disorders, Michigan State University, East Lansing Michigan 48823, United States.
Brain Res. 2017 Sep 15;1671:55-66. doi: 10.1016/j.brainres.2017.06.031. Epub 2017 Jul 6.
Signed languages are natural human languages using the visual-motor modality. Previous neuroimaging studies based on univariate activation analysis show that a widely overlapped cortical network is recruited regardless whether the sign language is comprehended (for signers) or not (for non-signers). Here we move beyond previous studies by examining whether the functional connectivity profiles and the underlying organizational structure of the overlapped neural network may differ between signers and non-signers when watching sign language. Using graph theoretical analysis (GTA) and fMRI, we compared the large-scale functional network organization in hearing signers with non-signers during the observation of sentences in Chinese Sign Language. We found that signed sentences elicited highly similar cortical activations in the two groups of participants, with slightly larger responses within the left frontal and left temporal gyrus in signers than in non-signers. Crucially, further GTA revealed substantial group differences in the topologies of this activation network. Globally, the network engaged by signers showed higher local efficiency (t=2.379, p=0.026), small-worldness (t=2.604, p=0.016) and modularity (t=3.513, p=0.002), and exhibited different modular structures, compared to the network engaged by non-signers. Locally, the left ventral pars opercularis served as a network hub in the signer group but not in the non-signer group. These findings suggest that, despite overlap in cortical activation, the neural substrates underlying sign language comprehension are distinguishable at the network level from those for the processing of gestural action.
手语是使用视觉-运动方式的自然人类语言。以往基于单变量激活分析的神经影像学研究表明,无论手语是否被理解(对于手语使用者)或不被理解(对于非手语使用者),都会募集一个广泛重叠的皮质网络。在这里,我们超越以往的研究,通过研究在观看手语时,手语使用者和非手语使用者之间重叠神经网络的功能连接概况和潜在组织结构是否可能不同。使用图论分析(GTA)和功能磁共振成像(fMRI),我们比较了听力正常的手语使用者和非手语使用者在观察中文手语句子时的大规模功能网络组织。我们发现,手语句子在两组参与者中引起了高度相似的皮质激活,手语使用者左额叶和左颞回内的反应略大于非手语使用者。至关重要的是,进一步的GTA揭示了该激活网络拓扑结构上的显著组间差异。在全局上,与非手语使用者参与的网络相比,手语使用者参与的网络表现出更高的局部效率(t=2.379,p=0.026)、小世界特性(t=2.604,p=0.016)和模块化程度(t=3.513,p=0.002),并且表现出不同的模块化结构。在局部,左侧腹侧岛盖部在手语使用者组中充当网络枢纽,而在非手语使用者组中则不然。这些发现表明,尽管皮质激活存在重叠,但手语理解背后的神经基质在网络水平上与手势动作处理的神经基质是可区分的。