Suppr超能文献

用于理解手语的功能网络的图论分析

Graph theoretical analysis of functional network for comprehension of sign language.

作者信息

Liu Lanfang, Yan Xin, Liu Jin, Xia Mingrui, Lu Chunming, Emmorey Karen, Chu Mingyuan, Ding Guosheng

机构信息

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China; IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China.

Department of Communicative Sciences and Disorders, Michigan State University, East Lansing Michigan 48823, United States.

出版信息

Brain Res. 2017 Sep 15;1671:55-66. doi: 10.1016/j.brainres.2017.06.031. Epub 2017 Jul 6.

Abstract

Signed languages are natural human languages using the visual-motor modality. Previous neuroimaging studies based on univariate activation analysis show that a widely overlapped cortical network is recruited regardless whether the sign language is comprehended (for signers) or not (for non-signers). Here we move beyond previous studies by examining whether the functional connectivity profiles and the underlying organizational structure of the overlapped neural network may differ between signers and non-signers when watching sign language. Using graph theoretical analysis (GTA) and fMRI, we compared the large-scale functional network organization in hearing signers with non-signers during the observation of sentences in Chinese Sign Language. We found that signed sentences elicited highly similar cortical activations in the two groups of participants, with slightly larger responses within the left frontal and left temporal gyrus in signers than in non-signers. Crucially, further GTA revealed substantial group differences in the topologies of this activation network. Globally, the network engaged by signers showed higher local efficiency (t=2.379, p=0.026), small-worldness (t=2.604, p=0.016) and modularity (t=3.513, p=0.002), and exhibited different modular structures, compared to the network engaged by non-signers. Locally, the left ventral pars opercularis served as a network hub in the signer group but not in the non-signer group. These findings suggest that, despite overlap in cortical activation, the neural substrates underlying sign language comprehension are distinguishable at the network level from those for the processing of gestural action.

摘要

手语是使用视觉-运动方式的自然人类语言。以往基于单变量激活分析的神经影像学研究表明,无论手语是否被理解(对于手语使用者)或不被理解(对于非手语使用者),都会募集一个广泛重叠的皮质网络。在这里,我们超越以往的研究,通过研究在观看手语时,手语使用者和非手语使用者之间重叠神经网络的功能连接概况和潜在组织结构是否可能不同。使用图论分析(GTA)和功能磁共振成像(fMRI),我们比较了听力正常的手语使用者和非手语使用者在观察中文手语句子时的大规模功能网络组织。我们发现,手语句子在两组参与者中引起了高度相似的皮质激活,手语使用者左额叶和左颞回内的反应略大于非手语使用者。至关重要的是,进一步的GTA揭示了该激活网络拓扑结构上的显著组间差异。在全局上,与非手语使用者参与的网络相比,手语使用者参与的网络表现出更高的局部效率(t=2.379,p=0.026)、小世界特性(t=2.604,p=0.016)和模块化程度(t=3.513,p=0.002),并且表现出不同的模块化结构。在局部,左侧腹侧岛盖部在手语使用者组中充当网络枢纽,而在非手语使用者组中则不然。这些发现表明,尽管皮质激活存在重叠,但手语理解背后的神经基质在网络水平上与手势动作处理的神经基质是可区分的。

相似文献

1
Graph theoretical analysis of functional network for comprehension of sign language.
Brain Res. 2017 Sep 15;1671:55-66. doi: 10.1016/j.brainres.2017.06.031. Epub 2017 Jul 6.
2
Sign and speech: amodal commonality in left hemisphere dominance for comprehension of sentences.
Brain. 2005 Jun;128(Pt 6):1407-17. doi: 10.1093/brain/awh465. Epub 2005 Feb 23.
3
Dissociating linguistic and nonlinguistic gestural communication in the brain.
Neuroimage. 2004 Aug;22(4):1605-18. doi: 10.1016/j.neuroimage.2004.03.015.
5
Neural Activity During Mental Rotation in Deaf Signers: The Influence of Long-Term Sign Language Experience.
Ear Hear. 2018 Sep/Oct;39(5):1015-1024. doi: 10.1097/AUD.0000000000000540.
6
CNS activation and regional connectivity during pantomime observation: no engagement of the mirror neuron system for deaf signers.
Neuroimage. 2010 Jan 1;49(1):994-1005. doi: 10.1016/j.neuroimage.2009.08.001. Epub 2009 Aug 11.
7
Neural responses to meaningless pseudosigns: evidence for sign-based phonetic processing in superior temporal cortex.
Brain Lang. 2011 Apr;117(1):34-8. doi: 10.1016/j.bandl.2010.10.003. Epub 2010 Nov 20.
8
Functional neuroanatomy of language without speech: An ALE meta-analysis of sign language.
Hum Brain Mapp. 2021 Feb 15;42(3):699-712. doi: 10.1002/hbm.25254. Epub 2020 Oct 28.
9
The impact of early language exposure on the neural system supporting language in deaf and hearing adults.
Neuroimage. 2020 Apr 1;209:116411. doi: 10.1016/j.neuroimage.2019.116411. Epub 2019 Dec 16.
10
Lexical and sentential processing in British Sign Language.
Hum Brain Mapp. 2006 Jan;27(1):63-76. doi: 10.1002/hbm.20167.

引用本文的文献

1
The Neural Network for Sign Language Comprehension.
Lang Linguist Compass. 2025 Jul-Aug;19(4). doi: 10.1111/lnc3.70018. Epub 2025 Jul 23.
2
Seeing speech: Neural mechanisms of cued speech perception in prelingually deaf and hearing users.
Imaging Neurosci (Camb). 2025 Jun 24;3. doi: 10.1162/IMAG.a.53. eCollection 2025.
3
Neural adaptations in short-term learning of sign language revealed by fMRI and DTI.
Sci Rep. 2025 Feb 13;15(1):5345. doi: 10.1038/s41598-024-84468-z.
4
Long-term effects of childhood trauma subtypes on adult brain function.
Brain Behav. 2023 May;13(5):e2981. doi: 10.1002/brb3.2981. Epub 2023 Mar 27.
5
New Perspectives on the Neurobiology of Sign Languages.
Front Commun (Lausanne). 2021 Dec;6. doi: 10.3389/fcomm.2021.748430. Epub 2021 Dec 13.
6
Sign and Spoken Language Processing Differences in the Brain: A Brief Review of Recent Research.
Ann Neurosci. 2022 Jan;29(1):62-70. doi: 10.1177/09727531211070538. Epub 2022 Feb 15.
7
The role of the superior parietal lobule in lexical processing of sign language: Insights from fMRI and TMS.
Cortex. 2021 Feb;135:240-254. doi: 10.1016/j.cortex.2020.10.025. Epub 2020 Dec 8.
8
Multimodal imaging of brain reorganization in hearing late learners of sign language.
Hum Brain Mapp. 2021 Feb 1;42(2):384-397. doi: 10.1002/hbm.25229. Epub 2020 Oct 24.
9
Hubs disruption in mesial temporal lobe epilepsy. A resting-state fMRI study on a language-and-memory network.
Hum Brain Mapp. 2020 Feb 15;41(3):779-796. doi: 10.1002/hbm.24839. Epub 2019 Nov 13.

本文引用的文献

1
Intrinsic functional network architecture of human semantic processing: Modules and hubs.
Neuroimage. 2016 May 15;132:542-555. doi: 10.1016/j.neuroimage.2016.03.004. Epub 2016 Mar 10.
2
Neural systems supporting linguistic structure, linguistic experience, and symbolic communication in sign language and gesture.
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11684-9. doi: 10.1073/pnas.1510527112. Epub 2015 Aug 17.
3
GRETNA: a graph theoretical network analysis toolbox for imaging connectomics.
Front Hum Neurosci. 2015 Jun 30;9:386. doi: 10.3389/fnhum.2015.00386. eCollection 2015.
4
Bilingualism alters brain functional connectivity between "control" regions and "language" regions: Evidence from bimodal bilinguals.
Neuropsychologia. 2015 May;71:236-47. doi: 10.1016/j.neuropsychologia.2015.04.007. Epub 2015 Apr 6.
6
Reworking the language network.
Trends Cogn Sci. 2014 Mar;18(3):120-6. doi: 10.1016/j.tics.2013.12.006. Epub 2014 Jan 15.
7
Network hubs in the human brain.
Trends Cogn Sci. 2013 Dec;17(12):683-96. doi: 10.1016/j.tics.2013.09.012.
8
Structural and functional brain networks: from connections to cognition.
Science. 2013 Nov 1;342(6158):1238411. doi: 10.1126/science.1238411.
9
Small-worldness and modularity of the resting-state functional brain network decrease with aging.
Neurosci Lett. 2013 Nov 27;556:104-8. doi: 10.1016/j.neulet.2013.10.023. Epub 2013 Oct 21.
10
An anatomical substrate for integration among functional networks in human cortex.
J Neurosci. 2013 Sep 4;33(36):14489-500. doi: 10.1523/JNEUROSCI.2128-13.2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验