Kapustin Eugene A, Lee Seungkyu, Alshammari Ahmad S, Yaghi Omar M
Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
ACS Cent Sci. 2017 Jun 28;3(6):662-667. doi: 10.1021/acscentsci.7b00169. Epub 2017 Jun 7.
Despite numerous studies on chemical and thermal stability of metal-organic frameworks (MOFs), mechanical stability remains largely undeveloped. To date, no strategy exists to control the mechanical deformation of MOFs under ultrahigh pressure. Here, we show that the mechanically unstable MOF-520 can be retrofitted by precise placement of a rigid 4,4'-biphenyldicarboxylate (BPDC) linker as a "girder" to afford a mechanically robust framework: MOF-520-BPDC. This retrofitting alters how the structure deforms under ultrahigh pressure and thus leads to a drastic enhancement of its mechanical robustness. While in the parent MOF-520 the pressure transmitting medium molecules diffuse into the pore and expand the structure from the inside upon compression, the girder in the new retrofitted MOF-520-BPDC prevents the framework from expansion by linking two adjacent secondary building units together. As a result, the modified MOF is stable under hydrostatic compression in a diamond-anvil cell up to 5.5 gigapascal. The increased mechanical stability of MOF-520-BPDC prohibits the typical amorphization observed for MOFs in this pressure range. Direct correlation between the orientation of these girders within the framework and its linear strain was estimated, providing new insights for the design of MOFs with optimized mechanical properties.
尽管对金属有机框架(MOF)的化学和热稳定性进行了大量研究,但机械稳定性在很大程度上仍未得到充分发展。迄今为止,尚无策略可控制MOF在超高压下的机械变形。在此,我们表明,通过精确放置刚性的4,4'-联苯二甲酸酯(BPDC)连接体作为“大梁”,可以对机械不稳定的MOF-520进行改造,从而获得机械坚固的框架:MOF-520-BPDC。这种改造改变了结构在超高压下的变形方式,从而极大地增强了其机械坚固性。在母体MOF-520中,压力传递介质分子在压缩时扩散到孔中并从内部使结构膨胀,而新改造的MOF-520-BPDC中的大梁通过将两个相邻的二级建筑单元连接在一起,防止框架膨胀。结果,改性后的MOF在金刚石对顶砧池中高达5.5吉帕斯卡的静水压力下是稳定的。MOF-520-BPDC机械稳定性的提高阻止了在此压力范围内MOF中常见的非晶化现象。估计了这些大梁在框架内的取向与其线性应变之间的直接相关性,为设计具有优化机械性能的MOF提供了新的见解。