Lee John S, Kapustin Eugene A, Pei Xiaokun, Llopis Sebastián, Yaghi Omar M, Toste F Dean
Department of Chemistry, University of California, Berkeley, CA, USA.
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Chem. 2020 Jan 9;6(1):142-152. doi: 10.1016/j.chempr.2019.10.022. Epub 2019 Nov 25.
Unimolecular decomposition pathways are challenging to address in transition-metal catalysis and have previously not been suppressed incorporation into a solid support. Two robust metal-organic frameworks (IRMOF-10 and bio-MOF-100) are used for the architectural stabilization of a structurally well-defined gold(III) catalyst. The inherent rigidity of these materials is utilized to preclude a unimolecular decomposition pathway - reductive elimination. Through this architectural stabilization strategy, decomposition of the incorporated gold(III) catalyst in the metal-organic frameworks is not observed; in contrast, the homogeneous analogue is prone to decomposition in solution. Stabilization of the catalyst in these metal-organic frameworks precludes leaching and enables recyclability, which is crucial for productive heterogeneous catalysis.
在过渡金属催化中,单分子分解途径很难处理,并且此前未被抑制而纳入固体载体中。两种坚固的金属有机框架(IRMOF-10和bio-MOF-100)被用于对结构明确的金(III)催化剂进行结构稳定化。利用这些材料固有的刚性来排除单分子分解途径——还原消除。通过这种结构稳定化策略,未观察到金属有机框架中掺入的金(III)催化剂发生分解;相比之下,均相类似物在溶液中易于分解。在这些金属有机框架中对催化剂进行稳定化可防止浸出并实现可回收性,这对于高效的多相催化至关重要。