Suppr超能文献

推进临界长度以上的间断纤维增强复合材料以取代当前的牙科复合材料和汞合金。

Advancing Discontinuous Fiber-Reinforced Composites above Critical Length for Replacing Current Dental Composites and Amalgam.

作者信息

Petersen Richard C

机构信息

Department of Restorative Sciences, University of Alabama at Birmingham, Alabama, USA.

出版信息

J Nat Sci. 2017 Feb;3(2).

Abstract

Clinicians have been aware that posterior dental particulate-filled composites (PFCs) have many placement disadvantages and indeed fail clinically at an average rate faster than amalgam alloys. Secondary caries is most commonly identified as the chief failure mechanism for both dental PFCs and amalgam. In terms of a solution, fiber-reinforced composites (FRCs) above critical length (L) can provide mechanical property safety factors with compound molding packing qualities to reduce many problems associated with dental PFCs. Discontinuous chopped fibers above the necessary L have been incorporated into dental PFCs to make consolidated molding compounds that can be tested for comparisons with PFC controls on mechanical properties, wear resistance, void-defect occurrence and packing ability to reestablish the interproximal contact. Further, imaging characterizations can aid in providing comparisons for FRCs with other materials using scanning electron microscopy, atomic force microscopy and photographs. Also, the amalgam filling material has finally been tested by appropriate ASTM flexural bending methods that eliminate shear failure associated with short span lengths in dental standards for comparison with dental PFCs to best explain increased longevity for the amalgam when compared to dental PFCs. Accurate mechanical tests also provide significant proof for superior advantages with FRCs. Mechanical properties tested included flexural strength, yield strength, modulus, resilience, work of fracture, critical strain energy release and critical stress intensity factor. FRC molding compounds with fibers above L extensively improve all mechanical properties over PFC dental paste and over the amalgam for all mechanical properties except modulus. The dental PFC also demonstrated superior mechanical properties over the amalgam except modulus to provide a better explanation for increased PFC failure due to secondary caries. With lower PFC modulus, increased adhesive bond breakage is expected from greater interlaminar shearing as the PFC accentuates straining deflections compared to amalgam at the higher modulus tooth enamel margins during loading. Preliminary testing for experimental FRCs with fibers above L demonstrated three-body wear even less than enamel to reduce the possibility of marginal ditching as a factor in secondary caries seen with both PFCs and amalgam. Further, FRC molding compounds with chopped fibers above L properly impregnated with photocure resin can pack with condensing forces higher than the amalgam to eliminate voids in the proximal box commonly seen with dental PFCs and reestablish interproximal contacts better than amalgam. Subsequent higher FRC packing forces can aid in squeezing monomer, resin, particulate and nanofibers deeper into adhesive mechanical bond retention sites and then leave a higher concentration of insoluble fibers and particulate as moisture barriers at the cavity margins. Also, FRC molding compounds can incorporate triclosan antimicrobial and maintain a strong packing condensing force that cannot be accomplished with PFCs which form a sticky gluey consistency with triclosan. In addition, large FRC packing forces allow higher concentrations of the hydrophobic ethoxylated bis phenol A dimethacrylate (BisEMA) low-viscosity oligomer resin that reduces water sorption and solubility to then still maintain excellent consistency. Therefore, photocure molding compounds with fibers above L appear to have many exceptional properties and design capabilities as improved alternatives for replacing both PFCs and amalgam alloys in restorative dental care.

摘要

临床医生已经意识到,后牙用颗粒填充复合材料(PFCs)存在诸多操作上的缺点,而且在临床上的失败率实际上比汞合金更快。继发龋最常被认为是牙科PFCs和汞合金的主要失败机制。就解决方案而言,长度超过临界值(L)的纤维增强复合材料(FRCs)可以提供机械性能安全系数,并具有复合成型填充特性,以减少与牙科PFCs相关的许多问题。长度超过必要L值的不连续短切纤维已被纳入牙科PFCs中,以制成固结成型化合物,可对其进行测试,以便与PFC对照品在机械性能、耐磨性、空隙缺陷发生率和恢复邻面接触的填充能力方面进行比较。此外,成像表征有助于使用扫描电子显微镜、原子力显微镜和照片对FRCs与其他材料进行比较。此外,汞合金填充材料最终通过适当的ASTM弯曲方法进行了测试,该方法消除了牙科标准中与短跨距长度相关的剪切失效,以便与牙科PFCs进行比较,从而最好地解释汞合金与牙科PFCs相比更长的使用寿命。准确的机械测试也为FRCs的卓越优势提供了重要证据。测试的机械性能包括弯曲强度、屈服强度、模量、弹性、断裂功、临界应变能释放和临界应力强度因子。长度超过L的纤维增强的FRC成型化合物在所有机械性能方面,除模量外,均比PFC牙膏和汞合金显著改善了所有机械性能。牙科PFC在除模量外的性能上也优于汞合金,这为继发龋导致PFC失败增加提供了更好的解释。由于PFC模量较低,与较高模量的牙釉质边缘处的汞合金相比,PFC在加载过程中会加剧应变挠度,预计会因更大的层间剪切而增加粘结破坏。对长度超过L的纤维增强的实验性FRCs的初步测试表明,三体磨损甚至比牙釉质还小,从而降低了边缘沟作为PFCs和汞合金继发龋因素的可能性。此外,长度超过L的短切纤维增强的FRC成型化合物,经光固化树脂适当浸渍后,能够以高于汞合金的挤压力进行填充,从而消除牙科PFCs常见的邻面盒中的空隙,并比汞合金更好地恢复邻面接触。随后更高的FRC填充力有助于将单体、树脂、颗粒和纳米纤维挤入更深的粘结机械固位部位,然后在洞缘留下更高浓度的不溶性纤维和颗粒作为防潮层。此外,FRC成型化合物可以加入三氯生抗菌剂,并保持强大的填充挤压力,这是PFCs无法做到的,因为PFCs与三氯生会形成粘性胶状稠度。此外,较大的FRC填充力允许使用更高浓度的疏水性乙氧基化双酚A二甲基丙烯酸酯(BisEMA)低粘度低聚物树脂,该树脂可降低吸水性和溶解性,从而仍能保持优异的稠度。因此,长度超过L的纤维增强的光固化成型化合物似乎具有许多优异的性能和设计能力,作为修复牙科护理中替代PFCs和汞合金的改进替代品。

相似文献

本文引用的文献

4
Triclosan antimicrobial polymers.三氯生抗菌聚合物。
AIMS Mol Sci. 2016;3(1):88-103. doi: 10.3934/molsci.2016.1.88. Epub 2016 Mar 29.
7
Silver nanoparticles as potential antibacterial agents.银纳米颗粒作为潜在的抗菌剂。
Molecules. 2015 May 18;20(5):8856-74. doi: 10.3390/molecules20058856.
10
Silver nanoparticles in dental biomaterials.牙科生物材料中的银纳米颗粒
Int J Biomater. 2015;2015:485275. doi: 10.1155/2015/485275. Epub 2015 Jan 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验