Nelson David L, Applegate Greg A, Beio Matthew L, Graham Danielle L, Berkowitz David B
From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588.
From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588.
J Biol Chem. 2017 Aug 25;292(34):13986-14002. doi: 10.1074/jbc.M117.777904. Epub 2017 Jul 10.
There is currently great interest in human serine racemase, the enzyme responsible for producing the NMDA co-agonist d-serine. Reported correlation of d-serine levels with disorders including Alzheimer's disease, ALS, and ischemic brain damage (elevated d-serine) and schizophrenia (reduced d-serine) has further piqued this interest. Reported here is a structure/activity relationship study of position Ser, the putative -face base. In the most extreme case of functional reprogramming, the S84D mutant displays a dramatic reversal of β-elimination substrate specificity in favor of l-serine over the normally preferred l-serine--sulfate (∼1200-fold change in / ratios) and l (l-THA; ∼5000-fold change in / ratios) alternative substrates. On the other hand, the S84T (which performs l-Ser racemization activity), S84A (good but high for l-THA elimination), and S84N mutants (nearly WT efficiency for l-Ser elimination) displayed intermediate activity, all showing a preference for the anionic substrates, but generally attenuated compared with the native enzyme. Inhibition studies with l--β-hydroxyaspartate follow this trend, with both WT serine racemase and the S84N mutant being competitively inhibited, with = 31 ± 1.5 μm and 1.5 ± 0.1 mm, respectively, and the S84D being inert to inhibition. Computational modeling pointed to a key role for residue Arg-135 in binding and properly positioning the l-THA and l-serine--sulfate substrates and the l--β-hydroxyaspartate inhibitor. Examination of available sequence data suggests that Arg-135 may have originated for l-THA-like β-elimination function in earlier evolutionary variants, and examination of available structural data suggests that a Ser-HO-Lys hydrogen-bonding network in human serine racemase lowers the p of the Ser-face base.
目前,人们对人丝氨酸消旋酶极为关注,该酶负责生成N-甲基-D-天冬氨酸(NMDA)协同激动剂D-丝氨酸。据报道,D-丝氨酸水平与包括阿尔茨海默病、肌萎缩侧索硬化症和缺血性脑损伤(D-丝氨酸水平升高)以及精神分裂症(D-丝氨酸水平降低)在内的多种疾病相关,这进一步激发了人们的兴趣。本文报道了对假定的β面碱基丝氨酸(Ser)位点的结构/活性关系研究。在功能重编程的最极端情况下,S84D突变体表现出β消除底物特异性的显著逆转,有利于L-丝氨酸而非通常更受青睐的L-丝氨酸-硫酸盐(kcat/Km比值变化约1200倍)和L-(L-THA;kcat/Km比值变化约5000倍)替代底物。另一方面,S84T(具有L-丝氨酸消旋酶活性)、S84A(对L-THA消除反应具有良好的kcat但Km较高)和S84N突变体(对L-丝氨酸消除反应效率接近野生型)表现出中等活性,均表现出对阴离子底物的偏好,但与天然酶相比通常有所减弱。用L-β-羟基天冬氨酸进行的抑制研究也遵循这一趋势,野生型丝氨酸消旋酶和S84N突变体均受到竞争性抑制,Ki分别为31±1.5μm和1.5±0.1mm,而S84D对抑制作用不敏感。计算模型表明,残基Arg-135在结合并正确定位L-THA和L-丝氨酸-硫酸盐底物以及L-β-羟基天冬氨酸抑制剂方面起关键作用。对现有序列数据的研究表明,Arg-135可能起源于早期进化变体中类似L-THA的β消除功能,对现有结构数据的研究表明,人丝氨酸消旋酶中的Ser-HO-Lys氢键网络降低了Ser面碱基的pKa。